| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzoel1 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ∈ ℤ ) |
| 2 |
|
uzid |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 3 |
|
peano2uz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐵 ) → ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 4 |
|
fzoss1 |
⊢ ( ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐵 ) → ( ( 𝐵 + 1 ) ..^ ( 𝐶 + 1 ) ) ⊆ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ) |
| 5 |
1 2 3 4
|
4syl |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( ( 𝐵 + 1 ) ..^ ( 𝐶 + 1 ) ) ⊆ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ) |
| 6 |
|
1z |
⊢ 1 ∈ ℤ |
| 7 |
|
fzoaddel |
⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 1 ∈ ℤ ) → ( 𝐴 + 1 ) ∈ ( ( 𝐵 + 1 ) ..^ ( 𝐶 + 1 ) ) ) |
| 8 |
6 7
|
mpan2 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( 𝐴 + 1 ) ∈ ( ( 𝐵 + 1 ) ..^ ( 𝐶 + 1 ) ) ) |
| 9 |
5 8
|
sseldd |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ) |
| 10 |
|
elfzoel2 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ℤ ) |
| 11 |
|
elfzolt3 |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 < 𝐶 ) |
| 12 |
|
zre |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) |
| 13 |
|
zre |
⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℝ ) |
| 14 |
|
ltle |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐶 → 𝐵 ≤ 𝐶 ) ) |
| 15 |
12 13 14
|
syl2an |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 < 𝐶 → 𝐵 ≤ 𝐶 ) ) |
| 16 |
1 10 15
|
syl2anc |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( 𝐵 < 𝐶 → 𝐵 ≤ 𝐶 ) ) |
| 17 |
11 16
|
mpd |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ≤ 𝐶 ) |
| 18 |
|
eluz2 |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶 ) ) |
| 19 |
1 10 17 18
|
syl3anbrc |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 20 |
|
fzosplitsni |
⊢ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) → ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ↔ ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ 𝐶 ) ∨ ( 𝐴 + 1 ) = 𝐶 ) ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ ( 𝐶 + 1 ) ) ↔ ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ 𝐶 ) ∨ ( 𝐴 + 1 ) = 𝐶 ) ) ) |
| 22 |
9 21
|
mpbid |
⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → ( ( 𝐴 + 1 ) ∈ ( 𝐵 ..^ 𝐶 ) ∨ ( 𝐴 + 1 ) = 𝐶 ) ) |