| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nncn |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
| 3 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℂ ) |
| 5 |
2 4
|
mulcomd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
| 6 |
5
|
oveq2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) = ( 𝑀 gcd ( 𝑁 · 𝑀 ) ) ) |
| 7 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℕ0 ) |
| 9 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
| 10 |
8 9
|
gcdmultipled |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd ( 𝑁 · 𝑀 ) ) = 𝑀 ) |
| 11 |
6 10
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd ( 𝑀 · 𝑁 ) ) = 𝑀 ) |