Metamath Proof Explorer


Theorem glbprlem

Description: Lemma for glbprdm and glbpr . (Contributed by Zhi Wang, 26-Sep-2024)

Ref Expression
Hypotheses lubpr.k ( 𝜑𝐾 ∈ Poset )
lubpr.b 𝐵 = ( Base ‘ 𝐾 )
lubpr.x ( 𝜑𝑋𝐵 )
lubpr.y ( 𝜑𝑌𝐵 )
lubpr.l = ( le ‘ 𝐾 )
lubpr.c ( 𝜑𝑋 𝑌 )
lubpr.s ( 𝜑𝑆 = { 𝑋 , 𝑌 } )
glbpr.g 𝐺 = ( glb ‘ 𝐾 )
Assertion glbprlem ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ∧ ( 𝐺𝑆 ) = 𝑋 ) )

Proof

Step Hyp Ref Expression
1 lubpr.k ( 𝜑𝐾 ∈ Poset )
2 lubpr.b 𝐵 = ( Base ‘ 𝐾 )
3 lubpr.x ( 𝜑𝑋𝐵 )
4 lubpr.y ( 𝜑𝑌𝐵 )
5 lubpr.l = ( le ‘ 𝐾 )
6 lubpr.c ( 𝜑𝑋 𝑌 )
7 lubpr.s ( 𝜑𝑆 = { 𝑋 , 𝑌 } )
8 glbpr.g 𝐺 = ( glb ‘ 𝐾 )
9 eqid ( ODual ‘ 𝐾 ) = ( ODual ‘ 𝐾 )
10 9 odupos ( 𝐾 ∈ Poset → ( ODual ‘ 𝐾 ) ∈ Poset )
11 1 10 syl ( 𝜑 → ( ODual ‘ 𝐾 ) ∈ Poset )
12 9 2 odubas 𝐵 = ( Base ‘ ( ODual ‘ 𝐾 ) )
13 9 5 oduleval = ( le ‘ ( ODual ‘ 𝐾 ) )
14 brcnvg ( ( 𝑌𝐵𝑋𝐵 ) → ( 𝑌 𝑋𝑋 𝑌 ) )
15 4 3 14 syl2anc ( 𝜑 → ( 𝑌 𝑋𝑋 𝑌 ) )
16 6 15 mpbird ( 𝜑𝑌 𝑋 )
17 prcom { 𝑋 , 𝑌 } = { 𝑌 , 𝑋 }
18 7 17 eqtrdi ( 𝜑𝑆 = { 𝑌 , 𝑋 } )
19 eqid ( lub ‘ ( ODual ‘ 𝐾 ) ) = ( lub ‘ ( ODual ‘ 𝐾 ) )
20 11 12 4 3 13 16 18 19 lubprdm ( 𝜑𝑆 ∈ dom ( lub ‘ ( ODual ‘ 𝐾 ) ) )
21 9 8 odulub ( 𝐾 ∈ Poset → 𝐺 = ( lub ‘ ( ODual ‘ 𝐾 ) ) )
22 1 21 syl ( 𝜑𝐺 = ( lub ‘ ( ODual ‘ 𝐾 ) ) )
23 22 dmeqd ( 𝜑 → dom 𝐺 = dom ( lub ‘ ( ODual ‘ 𝐾 ) ) )
24 20 23 eleqtrrd ( 𝜑𝑆 ∈ dom 𝐺 )
25 22 fveq1d ( 𝜑 → ( 𝐺𝑆 ) = ( ( lub ‘ ( ODual ‘ 𝐾 ) ) ‘ 𝑆 ) )
26 11 12 4 3 13 16 18 19 lubpr ( 𝜑 → ( ( lub ‘ ( ODual ‘ 𝐾 ) ) ‘ 𝑆 ) = 𝑋 )
27 25 26 eqtrd ( 𝜑 → ( 𝐺𝑆 ) = 𝑋 )
28 24 27 jca ( 𝜑 → ( 𝑆 ∈ dom 𝐺 ∧ ( 𝐺𝑆 ) = 𝑋 ) )