Description: Lemma for glbprdm and glbpr . (Contributed by Zhi Wang, 26-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lubpr.k | |
|
lubpr.b | |
||
lubpr.x | |
||
lubpr.y | |
||
lubpr.l | |
||
lubpr.c | |
||
lubpr.s | |
||
glbpr.g | |
||
Assertion | glbprlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lubpr.k | |
|
2 | lubpr.b | |
|
3 | lubpr.x | |
|
4 | lubpr.y | |
|
5 | lubpr.l | |
|
6 | lubpr.c | |
|
7 | lubpr.s | |
|
8 | glbpr.g | |
|
9 | eqid | |
|
10 | 9 | odupos | |
11 | 1 10 | syl | |
12 | 9 2 | odubas | |
13 | 9 5 | oduleval | |
14 | brcnvg | |
|
15 | 4 3 14 | syl2anc | |
16 | 6 15 | mpbird | |
17 | prcom | |
|
18 | 7 17 | eqtrdi | |
19 | eqid | |
|
20 | 11 12 4 3 13 16 18 19 | lubprdm | |
21 | 9 8 | odulub | |
22 | 1 21 | syl | |
23 | 22 | dmeqd | |
24 | 20 23 | eleqtrrd | |
25 | 22 | fveq1d | |
26 | 11 12 4 3 13 16 18 19 | lubpr | |
27 | 25 26 | eqtrd | |
28 | 24 27 | jca | |