Metamath Proof Explorer


Theorem glbprlem

Description: Lemma for glbprdm and glbpr . (Contributed by Zhi Wang, 26-Sep-2024)

Ref Expression
Hypotheses lubpr.k φKPoset
lubpr.b B=BaseK
lubpr.x φXB
lubpr.y φYB
lubpr.l ˙=K
lubpr.c φX˙Y
lubpr.s φS=XY
glbpr.g G=glbK
Assertion glbprlem φSdomGGS=X

Proof

Step Hyp Ref Expression
1 lubpr.k φKPoset
2 lubpr.b B=BaseK
3 lubpr.x φXB
4 lubpr.y φYB
5 lubpr.l ˙=K
6 lubpr.c φX˙Y
7 lubpr.s φS=XY
8 glbpr.g G=glbK
9 eqid ODualK=ODualK
10 9 odupos KPosetODualKPoset
11 1 10 syl φODualKPoset
12 9 2 odubas B=BaseODualK
13 9 5 oduleval ˙-1=ODualK
14 brcnvg YBXBY˙-1XX˙Y
15 4 3 14 syl2anc φY˙-1XX˙Y
16 6 15 mpbird φY˙-1X
17 prcom XY=YX
18 7 17 eqtrdi φS=YX
19 eqid lubODualK=lubODualK
20 11 12 4 3 13 16 18 19 lubprdm φSdomlubODualK
21 9 8 odulub KPosetG=lubODualK
22 1 21 syl φG=lubODualK
23 22 dmeqd φdomG=domlubODualK
24 20 23 eleqtrrd φSdomG
25 22 fveq1d φGS=lubODualKS
26 11 12 4 3 13 16 18 19 lubpr φlubODualKS=X
27 25 26 eqtrd φGS=X
28 24 27 jca φSdomGGS=X