Metamath Proof Explorer


Theorem gsumvsmul1

Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc1 , since every ring is a left module over itself. (Contributed by Thierry Arnoux, 12-Jun-2023)

Ref Expression
Hypotheses gsumvsmul1.b 𝐵 = ( Base ‘ 𝑅 )
gsumvsmul1.s 𝑆 = ( Scalar ‘ 𝑅 )
gsumvsmul1.k 𝐾 = ( Base ‘ 𝑆 )
gsumvsmul1.z 0 = ( 0g𝑆 )
gsumvsmul1.t · = ( ·𝑠𝑅 )
gsumvsmul1.r ( 𝜑𝑅 ∈ LMod )
gsumvsmul1.1 ( 𝜑𝑆 ∈ CMnd )
gsumvsmul1.a ( 𝜑𝐴𝑉 )
gsumvsmul1.x ( 𝜑𝑌𝐵 )
gsumvsmul1.y ( ( 𝜑𝑘𝐴 ) → 𝑋𝐾 )
gsumvsmul1.n ( 𝜑 → ( 𝑘𝐴𝑋 ) finSupp 0 )
Assertion gsumvsmul1 ( 𝜑 → ( 𝑅 Σg ( 𝑘𝐴 ↦ ( 𝑋 · 𝑌 ) ) ) = ( ( 𝑆 Σg ( 𝑘𝐴𝑋 ) ) · 𝑌 ) )

Proof

Step Hyp Ref Expression
1 gsumvsmul1.b 𝐵 = ( Base ‘ 𝑅 )
2 gsumvsmul1.s 𝑆 = ( Scalar ‘ 𝑅 )
3 gsumvsmul1.k 𝐾 = ( Base ‘ 𝑆 )
4 gsumvsmul1.z 0 = ( 0g𝑆 )
5 gsumvsmul1.t · = ( ·𝑠𝑅 )
6 gsumvsmul1.r ( 𝜑𝑅 ∈ LMod )
7 gsumvsmul1.1 ( 𝜑𝑆 ∈ CMnd )
8 gsumvsmul1.a ( 𝜑𝐴𝑉 )
9 gsumvsmul1.x ( 𝜑𝑌𝐵 )
10 gsumvsmul1.y ( ( 𝜑𝑘𝐴 ) → 𝑋𝐾 )
11 gsumvsmul1.n ( 𝜑 → ( 𝑘𝐴𝑋 ) finSupp 0 )
12 lmodcmn ( 𝑅 ∈ LMod → 𝑅 ∈ CMnd )
13 cmnmnd ( 𝑅 ∈ CMnd → 𝑅 ∈ Mnd )
14 6 12 13 3syl ( 𝜑𝑅 ∈ Mnd )
15 1 2 5 3 lmodvslmhm ( ( 𝑅 ∈ LMod ∧ 𝑌𝐵 ) → ( 𝑥𝐾 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑆 GrpHom 𝑅 ) )
16 6 9 15 syl2anc ( 𝜑 → ( 𝑥𝐾 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑆 GrpHom 𝑅 ) )
17 ghmmhm ( ( 𝑥𝐾 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑆 GrpHom 𝑅 ) → ( 𝑥𝐾 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑆 MndHom 𝑅 ) )
18 16 17 syl ( 𝜑 → ( 𝑥𝐾 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑆 MndHom 𝑅 ) )
19 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 · 𝑌 ) = ( 𝑋 · 𝑌 ) )
20 oveq1 ( 𝑥 = ( 𝑆 Σg ( 𝑘𝐴𝑋 ) ) → ( 𝑥 · 𝑌 ) = ( ( 𝑆 Σg ( 𝑘𝐴𝑋 ) ) · 𝑌 ) )
21 3 4 7 14 8 18 10 11 19 20 gsummhm2 ( 𝜑 → ( 𝑅 Σg ( 𝑘𝐴 ↦ ( 𝑋 · 𝑌 ) ) ) = ( ( 𝑆 Σg ( 𝑘𝐴𝑋 ) ) · 𝑌 ) )