Step |
Hyp |
Ref |
Expression |
1 |
|
gsumvsmul1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
gsumvsmul1.s |
⊢ 𝑆 = ( Scalar ‘ 𝑅 ) |
3 |
|
gsumvsmul1.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
4 |
|
gsumvsmul1.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
5 |
|
gsumvsmul1.t |
⊢ · = ( ·𝑠 ‘ 𝑅 ) |
6 |
|
gsumvsmul1.r |
⊢ ( 𝜑 → 𝑅 ∈ LMod ) |
7 |
|
gsumvsmul1.1 |
⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
8 |
|
gsumvsmul1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
9 |
|
gsumvsmul1.x |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
10 |
|
gsumvsmul1.y |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐾 ) |
11 |
|
gsumvsmul1.n |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) |
12 |
|
lmodcmn |
⊢ ( 𝑅 ∈ LMod → 𝑅 ∈ CMnd ) |
13 |
|
cmnmnd |
⊢ ( 𝑅 ∈ CMnd → 𝑅 ∈ Mnd ) |
14 |
6 12 13
|
3syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
15 |
1 2 5 3
|
lmodvslmhm |
⊢ ( ( 𝑅 ∈ LMod ∧ 𝑌 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑆 GrpHom 𝑅 ) ) |
16 |
6 9 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑆 GrpHom 𝑅 ) ) |
17 |
|
ghmmhm |
⊢ ( ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑆 GrpHom 𝑅 ) → ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑆 MndHom 𝑅 ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 ↦ ( 𝑥 · 𝑌 ) ) ∈ ( 𝑆 MndHom 𝑅 ) ) |
19 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 𝑌 ) = ( 𝑋 · 𝑌 ) ) |
20 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑆 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) → ( 𝑥 · 𝑌 ) = ( ( 𝑆 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) · 𝑌 ) ) |
21 |
3 4 7 14 8 18 10 11 19 20
|
gsummhm2 |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑋 · 𝑌 ) ) ) = ( ( 𝑆 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) · 𝑌 ) ) |