| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumvsmul1.b |
|- B = ( Base ` R ) |
| 2 |
|
gsumvsmul1.s |
|- S = ( Scalar ` R ) |
| 3 |
|
gsumvsmul1.k |
|- K = ( Base ` S ) |
| 4 |
|
gsumvsmul1.z |
|- .0. = ( 0g ` S ) |
| 5 |
|
gsumvsmul1.t |
|- .x. = ( .s ` R ) |
| 6 |
|
gsumvsmul1.r |
|- ( ph -> R e. LMod ) |
| 7 |
|
gsumvsmul1.1 |
|- ( ph -> S e. CMnd ) |
| 8 |
|
gsumvsmul1.a |
|- ( ph -> A e. V ) |
| 9 |
|
gsumvsmul1.x |
|- ( ph -> Y e. B ) |
| 10 |
|
gsumvsmul1.y |
|- ( ( ph /\ k e. A ) -> X e. K ) |
| 11 |
|
gsumvsmul1.n |
|- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
| 12 |
|
lmodcmn |
|- ( R e. LMod -> R e. CMnd ) |
| 13 |
|
cmnmnd |
|- ( R e. CMnd -> R e. Mnd ) |
| 14 |
6 12 13
|
3syl |
|- ( ph -> R e. Mnd ) |
| 15 |
1 2 5 3
|
lmodvslmhm |
|- ( ( R e. LMod /\ Y e. B ) -> ( x e. K |-> ( x .x. Y ) ) e. ( S GrpHom R ) ) |
| 16 |
6 9 15
|
syl2anc |
|- ( ph -> ( x e. K |-> ( x .x. Y ) ) e. ( S GrpHom R ) ) |
| 17 |
|
ghmmhm |
|- ( ( x e. K |-> ( x .x. Y ) ) e. ( S GrpHom R ) -> ( x e. K |-> ( x .x. Y ) ) e. ( S MndHom R ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> ( x e. K |-> ( x .x. Y ) ) e. ( S MndHom R ) ) |
| 19 |
|
oveq1 |
|- ( x = X -> ( x .x. Y ) = ( X .x. Y ) ) |
| 20 |
|
oveq1 |
|- ( x = ( S gsum ( k e. A |-> X ) ) -> ( x .x. Y ) = ( ( S gsum ( k e. A |-> X ) ) .x. Y ) ) |
| 21 |
3 4 7 14 8 18 10 11 19 20
|
gsummhm2 |
|- ( ph -> ( R gsum ( k e. A |-> ( X .x. Y ) ) ) = ( ( S gsum ( k e. A |-> X ) ) .x. Y ) ) |