Metamath Proof Explorer


Theorem gsumvsmul1

Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc1 , since every ring is a left module over itself. (Contributed by Thierry Arnoux, 12-Jun-2023)

Ref Expression
Hypotheses gsumvsmul1.b
|- B = ( Base ` R )
gsumvsmul1.s
|- S = ( Scalar ` R )
gsumvsmul1.k
|- K = ( Base ` S )
gsumvsmul1.z
|- .0. = ( 0g ` S )
gsumvsmul1.t
|- .x. = ( .s ` R )
gsumvsmul1.r
|- ( ph -> R e. LMod )
gsumvsmul1.1
|- ( ph -> S e. CMnd )
gsumvsmul1.a
|- ( ph -> A e. V )
gsumvsmul1.x
|- ( ph -> Y e. B )
gsumvsmul1.y
|- ( ( ph /\ k e. A ) -> X e. K )
gsumvsmul1.n
|- ( ph -> ( k e. A |-> X ) finSupp .0. )
Assertion gsumvsmul1
|- ( ph -> ( R gsum ( k e. A |-> ( X .x. Y ) ) ) = ( ( S gsum ( k e. A |-> X ) ) .x. Y ) )

Proof

Step Hyp Ref Expression
1 gsumvsmul1.b
 |-  B = ( Base ` R )
2 gsumvsmul1.s
 |-  S = ( Scalar ` R )
3 gsumvsmul1.k
 |-  K = ( Base ` S )
4 gsumvsmul1.z
 |-  .0. = ( 0g ` S )
5 gsumvsmul1.t
 |-  .x. = ( .s ` R )
6 gsumvsmul1.r
 |-  ( ph -> R e. LMod )
7 gsumvsmul1.1
 |-  ( ph -> S e. CMnd )
8 gsumvsmul1.a
 |-  ( ph -> A e. V )
9 gsumvsmul1.x
 |-  ( ph -> Y e. B )
10 gsumvsmul1.y
 |-  ( ( ph /\ k e. A ) -> X e. K )
11 gsumvsmul1.n
 |-  ( ph -> ( k e. A |-> X ) finSupp .0. )
12 lmodcmn
 |-  ( R e. LMod -> R e. CMnd )
13 cmnmnd
 |-  ( R e. CMnd -> R e. Mnd )
14 6 12 13 3syl
 |-  ( ph -> R e. Mnd )
15 1 2 5 3 lmodvslmhm
 |-  ( ( R e. LMod /\ Y e. B ) -> ( x e. K |-> ( x .x. Y ) ) e. ( S GrpHom R ) )
16 6 9 15 syl2anc
 |-  ( ph -> ( x e. K |-> ( x .x. Y ) ) e. ( S GrpHom R ) )
17 ghmmhm
 |-  ( ( x e. K |-> ( x .x. Y ) ) e. ( S GrpHom R ) -> ( x e. K |-> ( x .x. Y ) ) e. ( S MndHom R ) )
18 16 17 syl
 |-  ( ph -> ( x e. K |-> ( x .x. Y ) ) e. ( S MndHom R ) )
19 oveq1
 |-  ( x = X -> ( x .x. Y ) = ( X .x. Y ) )
20 oveq1
 |-  ( x = ( S gsum ( k e. A |-> X ) ) -> ( x .x. Y ) = ( ( S gsum ( k e. A |-> X ) ) .x. Y ) )
21 3 4 7 14 8 18 10 11 19 20 gsummhm2
 |-  ( ph -> ( R gsum ( k e. A |-> ( X .x. Y ) ) ) = ( ( S gsum ( k e. A |-> X ) ) .x. Y ) )