| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptres.0 |
|- B = ( Base ` G ) |
| 2 |
|
gsummptres.1 |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsummptres.2 |
|- ( ph -> G e. CMnd ) |
| 4 |
|
gsummptres.3 |
|- ( ph -> A e. Fin ) |
| 5 |
|
gsummptres.4 |
|- ( ( ph /\ x e. A ) -> C e. B ) |
| 6 |
|
gsummptres.5 |
|- ( ( ph /\ x e. ( A \ D ) ) -> C = .0. ) |
| 7 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 8 |
|
eqid |
|- ( x e. A |-> C ) = ( x e. A |-> C ) |
| 9 |
2
|
fvexi |
|- .0. e. _V |
| 10 |
9
|
a1i |
|- ( ph -> .0. e. _V ) |
| 11 |
8 4 5 10
|
fsuppmptdm |
|- ( ph -> ( x e. A |-> C ) finSupp .0. ) |
| 12 |
|
inindif |
|- ( ( A i^i D ) i^i ( A \ D ) ) = (/) |
| 13 |
12
|
a1i |
|- ( ph -> ( ( A i^i D ) i^i ( A \ D ) ) = (/) ) |
| 14 |
|
inundif |
|- ( ( A i^i D ) u. ( A \ D ) ) = A |
| 15 |
14
|
eqcomi |
|- A = ( ( A i^i D ) u. ( A \ D ) ) |
| 16 |
15
|
a1i |
|- ( ph -> A = ( ( A i^i D ) u. ( A \ D ) ) ) |
| 17 |
1 2 7 3 4 5 11 13 16
|
gsumsplit2 |
|- ( ph -> ( G gsum ( x e. A |-> C ) ) = ( ( G gsum ( x e. ( A i^i D ) |-> C ) ) ( +g ` G ) ( G gsum ( x e. ( A \ D ) |-> C ) ) ) ) |
| 18 |
6
|
mpteq2dva |
|- ( ph -> ( x e. ( A \ D ) |-> C ) = ( x e. ( A \ D ) |-> .0. ) ) |
| 19 |
18
|
oveq2d |
|- ( ph -> ( G gsum ( x e. ( A \ D ) |-> C ) ) = ( G gsum ( x e. ( A \ D ) |-> .0. ) ) ) |
| 20 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
| 21 |
3 20
|
syl |
|- ( ph -> G e. Mnd ) |
| 22 |
|
diffi |
|- ( A e. Fin -> ( A \ D ) e. Fin ) |
| 23 |
4 22
|
syl |
|- ( ph -> ( A \ D ) e. Fin ) |
| 24 |
2
|
gsumz |
|- ( ( G e. Mnd /\ ( A \ D ) e. Fin ) -> ( G gsum ( x e. ( A \ D ) |-> .0. ) ) = .0. ) |
| 25 |
21 23 24
|
syl2anc |
|- ( ph -> ( G gsum ( x e. ( A \ D ) |-> .0. ) ) = .0. ) |
| 26 |
19 25
|
eqtrd |
|- ( ph -> ( G gsum ( x e. ( A \ D ) |-> C ) ) = .0. ) |
| 27 |
26
|
oveq2d |
|- ( ph -> ( ( G gsum ( x e. ( A i^i D ) |-> C ) ) ( +g ` G ) ( G gsum ( x e. ( A \ D ) |-> C ) ) ) = ( ( G gsum ( x e. ( A i^i D ) |-> C ) ) ( +g ` G ) .0. ) ) |
| 28 |
|
infi |
|- ( A e. Fin -> ( A i^i D ) e. Fin ) |
| 29 |
4 28
|
syl |
|- ( ph -> ( A i^i D ) e. Fin ) |
| 30 |
|
inss1 |
|- ( A i^i D ) C_ A |
| 31 |
30
|
sseli |
|- ( x e. ( A i^i D ) -> x e. A ) |
| 32 |
31 5
|
sylan2 |
|- ( ( ph /\ x e. ( A i^i D ) ) -> C e. B ) |
| 33 |
32
|
ralrimiva |
|- ( ph -> A. x e. ( A i^i D ) C e. B ) |
| 34 |
1 3 29 33
|
gsummptcl |
|- ( ph -> ( G gsum ( x e. ( A i^i D ) |-> C ) ) e. B ) |
| 35 |
1 7 2
|
mndrid |
|- ( ( G e. Mnd /\ ( G gsum ( x e. ( A i^i D ) |-> C ) ) e. B ) -> ( ( G gsum ( x e. ( A i^i D ) |-> C ) ) ( +g ` G ) .0. ) = ( G gsum ( x e. ( A i^i D ) |-> C ) ) ) |
| 36 |
21 34 35
|
syl2anc |
|- ( ph -> ( ( G gsum ( x e. ( A i^i D ) |-> C ) ) ( +g ` G ) .0. ) = ( G gsum ( x e. ( A i^i D ) |-> C ) ) ) |
| 37 |
27 36
|
eqtrd |
|- ( ph -> ( ( G gsum ( x e. ( A i^i D ) |-> C ) ) ( +g ` G ) ( G gsum ( x e. ( A \ D ) |-> C ) ) ) = ( G gsum ( x e. ( A i^i D ) |-> C ) ) ) |
| 38 |
17 37
|
eqtrd |
|- ( ph -> ( G gsum ( x e. A |-> C ) ) = ( G gsum ( x e. ( A i^i D ) |-> C ) ) ) |