Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptres.0 |
|- B = ( Base ` G ) |
2 |
|
gsummptres.1 |
|- .0. = ( 0g ` G ) |
3 |
|
gsummptres.2 |
|- ( ph -> G e. CMnd ) |
4 |
|
gsummptres.3 |
|- ( ph -> A e. Fin ) |
5 |
|
gsummptres.4 |
|- ( ( ph /\ x e. A ) -> C e. B ) |
6 |
|
gsummptres.5 |
|- ( ( ph /\ x e. ( A \ D ) ) -> C = .0. ) |
7 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
8 |
|
eqid |
|- ( x e. A |-> C ) = ( x e. A |-> C ) |
9 |
2
|
fvexi |
|- .0. e. _V |
10 |
9
|
a1i |
|- ( ph -> .0. e. _V ) |
11 |
8 4 5 10
|
fsuppmptdm |
|- ( ph -> ( x e. A |-> C ) finSupp .0. ) |
12 |
|
inindif |
|- ( ( A i^i D ) i^i ( A \ D ) ) = (/) |
13 |
12
|
a1i |
|- ( ph -> ( ( A i^i D ) i^i ( A \ D ) ) = (/) ) |
14 |
|
inundif |
|- ( ( A i^i D ) u. ( A \ D ) ) = A |
15 |
14
|
eqcomi |
|- A = ( ( A i^i D ) u. ( A \ D ) ) |
16 |
15
|
a1i |
|- ( ph -> A = ( ( A i^i D ) u. ( A \ D ) ) ) |
17 |
1 2 7 3 4 5 11 13 16
|
gsumsplit2 |
|- ( ph -> ( G gsum ( x e. A |-> C ) ) = ( ( G gsum ( x e. ( A i^i D ) |-> C ) ) ( +g ` G ) ( G gsum ( x e. ( A \ D ) |-> C ) ) ) ) |
18 |
6
|
mpteq2dva |
|- ( ph -> ( x e. ( A \ D ) |-> C ) = ( x e. ( A \ D ) |-> .0. ) ) |
19 |
18
|
oveq2d |
|- ( ph -> ( G gsum ( x e. ( A \ D ) |-> C ) ) = ( G gsum ( x e. ( A \ D ) |-> .0. ) ) ) |
20 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
21 |
3 20
|
syl |
|- ( ph -> G e. Mnd ) |
22 |
|
diffi |
|- ( A e. Fin -> ( A \ D ) e. Fin ) |
23 |
4 22
|
syl |
|- ( ph -> ( A \ D ) e. Fin ) |
24 |
2
|
gsumz |
|- ( ( G e. Mnd /\ ( A \ D ) e. Fin ) -> ( G gsum ( x e. ( A \ D ) |-> .0. ) ) = .0. ) |
25 |
21 23 24
|
syl2anc |
|- ( ph -> ( G gsum ( x e. ( A \ D ) |-> .0. ) ) = .0. ) |
26 |
19 25
|
eqtrd |
|- ( ph -> ( G gsum ( x e. ( A \ D ) |-> C ) ) = .0. ) |
27 |
26
|
oveq2d |
|- ( ph -> ( ( G gsum ( x e. ( A i^i D ) |-> C ) ) ( +g ` G ) ( G gsum ( x e. ( A \ D ) |-> C ) ) ) = ( ( G gsum ( x e. ( A i^i D ) |-> C ) ) ( +g ` G ) .0. ) ) |
28 |
|
infi |
|- ( A e. Fin -> ( A i^i D ) e. Fin ) |
29 |
4 28
|
syl |
|- ( ph -> ( A i^i D ) e. Fin ) |
30 |
|
inss1 |
|- ( A i^i D ) C_ A |
31 |
30
|
sseli |
|- ( x e. ( A i^i D ) -> x e. A ) |
32 |
31 5
|
sylan2 |
|- ( ( ph /\ x e. ( A i^i D ) ) -> C e. B ) |
33 |
32
|
ralrimiva |
|- ( ph -> A. x e. ( A i^i D ) C e. B ) |
34 |
1 3 29 33
|
gsummptcl |
|- ( ph -> ( G gsum ( x e. ( A i^i D ) |-> C ) ) e. B ) |
35 |
1 7 2
|
mndrid |
|- ( ( G e. Mnd /\ ( G gsum ( x e. ( A i^i D ) |-> C ) ) e. B ) -> ( ( G gsum ( x e. ( A i^i D ) |-> C ) ) ( +g ` G ) .0. ) = ( G gsum ( x e. ( A i^i D ) |-> C ) ) ) |
36 |
21 34 35
|
syl2anc |
|- ( ph -> ( ( G gsum ( x e. ( A i^i D ) |-> C ) ) ( +g ` G ) .0. ) = ( G gsum ( x e. ( A i^i D ) |-> C ) ) ) |
37 |
27 36
|
eqtrd |
|- ( ph -> ( ( G gsum ( x e. ( A i^i D ) |-> C ) ) ( +g ` G ) ( G gsum ( x e. ( A \ D ) |-> C ) ) ) = ( G gsum ( x e. ( A i^i D ) |-> C ) ) ) |
38 |
17 37
|
eqtrd |
|- ( ph -> ( G gsum ( x e. A |-> C ) ) = ( G gsum ( x e. ( A i^i D ) |-> C ) ) ) |