Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptres.0 |
|
2 |
|
gsummptres.1 |
|
3 |
|
gsummptres.2 |
|
4 |
|
gsummptres.3 |
|
5 |
|
gsummptres.4 |
|
6 |
|
gsummptres.5 |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
2
|
fvexi |
|
10 |
9
|
a1i |
|
11 |
8 4 5 10
|
fsuppmptdm |
|
12 |
|
inindif |
|
13 |
12
|
a1i |
|
14 |
|
inundif |
|
15 |
14
|
eqcomi |
|
16 |
15
|
a1i |
|
17 |
1 2 7 3 4 5 11 13 16
|
gsumsplit2 |
|
18 |
6
|
mpteq2dva |
|
19 |
18
|
oveq2d |
|
20 |
|
cmnmnd |
|
21 |
3 20
|
syl |
|
22 |
|
diffi |
|
23 |
4 22
|
syl |
|
24 |
2
|
gsumz |
|
25 |
21 23 24
|
syl2anc |
|
26 |
19 25
|
eqtrd |
|
27 |
26
|
oveq2d |
|
28 |
|
infi |
|
29 |
4 28
|
syl |
|
30 |
|
inss1 |
|
31 |
30
|
sseli |
|
32 |
31 5
|
sylan2 |
|
33 |
32
|
ralrimiva |
|
34 |
1 3 29 33
|
gsummptcl |
|
35 |
1 7 2
|
mndrid |
|
36 |
21 34 35
|
syl2anc |
|
37 |
27 36
|
eqtrd |
|
38 |
17 37
|
eqtrd |
|