| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } |
| 2 |
|
rabrsn |
⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } → ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ ∨ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) ) |
| 3 |
|
fveqeq2 |
⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 𝑁 ↔ ( ♯ ‘ ∅ ) = 𝑁 ) ) |
| 4 |
|
eqcom |
⊢ ( ( ♯ ‘ ∅ ) = 𝑁 ↔ 𝑁 = ( ♯ ‘ ∅ ) ) |
| 5 |
4
|
biimpi |
⊢ ( ( ♯ ‘ ∅ ) = 𝑁 → 𝑁 = ( ♯ ‘ ∅ ) ) |
| 6 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 7 |
5 6
|
eqtrdi |
⊢ ( ( ♯ ‘ ∅ ) = 𝑁 → 𝑁 = 0 ) |
| 8 |
7
|
orcd |
⊢ ( ( ♯ ‘ ∅ ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
| 9 |
3 8
|
biimtrdi |
⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 10 |
|
fveqeq2 |
⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 𝑁 ↔ ( ♯ ‘ { 𝐴 } ) = 𝑁 ) ) |
| 11 |
|
eqcom |
⊢ ( ( ♯ ‘ { 𝐴 } ) = 𝑁 ↔ 𝑁 = ( ♯ ‘ { 𝐴 } ) ) |
| 12 |
11
|
biimpi |
⊢ ( ( ♯ ‘ { 𝐴 } ) = 𝑁 → 𝑁 = ( ♯ ‘ { 𝐴 } ) ) |
| 13 |
|
hashsng |
⊢ ( 𝐴 ∈ V → ( ♯ ‘ { 𝐴 } ) = 1 ) |
| 14 |
12 13
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ V ∧ ( ♯ ‘ { 𝐴 } ) = 𝑁 ) → 𝑁 = 1 ) |
| 15 |
14
|
olcd |
⊢ ( ( 𝐴 ∈ V ∧ ( ♯ ‘ { 𝐴 } ) = 𝑁 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
| 16 |
15
|
ex |
⊢ ( 𝐴 ∈ V → ( ( ♯ ‘ { 𝐴 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 17 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
| 18 |
|
fveqeq2 |
⊢ ( { 𝐴 } = ∅ → ( ( ♯ ‘ { 𝐴 } ) = 𝑁 ↔ ( ♯ ‘ ∅ ) = 𝑁 ) ) |
| 19 |
18 8
|
biimtrdi |
⊢ ( { 𝐴 } = ∅ → ( ( ♯ ‘ { 𝐴 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 20 |
17 19
|
sylbi |
⊢ ( ¬ 𝐴 ∈ V → ( ( ♯ ‘ { 𝐴 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 21 |
16 20
|
pm2.61i |
⊢ ( ( ♯ ‘ { 𝐴 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
| 22 |
10 21
|
biimtrdi |
⊢ ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 23 |
9 22
|
jaoi |
⊢ ( ( { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = ∅ ∨ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } = { 𝐴 } ) → ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
| 24 |
1 2 23
|
mp2b |
⊢ ( ( ♯ ‘ { 𝑥 ∈ { 𝐴 } ∣ 𝜑 } ) = 𝑁 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |