| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hba1 | ⊢ ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ∀ 𝑥 ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 ) ) | 
						
							| 2 |  | hba1 | ⊢ ( ∀ 𝑥 ( 𝜓  →  ∀ 𝑥 𝜓 )  →  ∀ 𝑥 ∀ 𝑥 ( 𝜓  →  ∀ 𝑥 𝜓 ) ) | 
						
							| 3 | 1 2 | hban | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜓  →  ∀ 𝑥 𝜓 ) )  →  ∀ 𝑥 ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜓  →  ∀ 𝑥 𝜓 ) ) ) | 
						
							| 4 |  | hbntal | ⊢ ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  →  ∀ 𝑥 ( ¬  𝜑  →  ∀ 𝑥 ¬  𝜑 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜓  →  ∀ 𝑥 𝜓 ) )  →  ∀ 𝑥 ( ¬  𝜑  →  ∀ 𝑥 ¬  𝜑 ) ) | 
						
							| 6 | 5 | 19.21bi | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜓  →  ∀ 𝑥 𝜓 ) )  →  ( ¬  𝜑  →  ∀ 𝑥 ¬  𝜑 ) ) | 
						
							| 7 |  | pm2.21 | ⊢ ( ¬  𝜑  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 8 | 7 | alimi | ⊢ ( ∀ 𝑥 ¬  𝜑  →  ∀ 𝑥 ( 𝜑  →  𝜓 ) ) | 
						
							| 9 | 6 8 | syl6 | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜓  →  ∀ 𝑥 𝜓 ) )  →  ( ¬  𝜑  →  ∀ 𝑥 ( 𝜑  →  𝜓 ) ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜓  →  ∀ 𝑥 𝜓 ) )  →  ∀ 𝑥 ( 𝜓  →  ∀ 𝑥 𝜓 ) ) | 
						
							| 11 | 10 | 19.21bi | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜓  →  ∀ 𝑥 𝜓 ) )  →  ( 𝜓  →  ∀ 𝑥 𝜓 ) ) | 
						
							| 12 |  | ax-1 | ⊢ ( 𝜓  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 13 | 12 | alimi | ⊢ ( ∀ 𝑥 𝜓  →  ∀ 𝑥 ( 𝜑  →  𝜓 ) ) | 
						
							| 14 | 11 13 | syl6 | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜓  →  ∀ 𝑥 𝜓 ) )  →  ( 𝜓  →  ∀ 𝑥 ( 𝜑  →  𝜓 ) ) ) | 
						
							| 15 | 9 14 | jad | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜓  →  ∀ 𝑥 𝜓 ) )  →  ( ( 𝜑  →  𝜓 )  →  ∀ 𝑥 ( 𝜑  →  𝜓 ) ) ) | 
						
							| 16 | 3 15 | alrimih | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜑 )  ∧  ∀ 𝑥 ( 𝜓  →  ∀ 𝑥 𝜓 ) )  →  ∀ 𝑥 ( ( 𝜑  →  𝜓 )  →  ∀ 𝑥 ( 𝜑  →  𝜓 ) ) ) |