Metamath Proof Explorer


Theorem hbimpg

Description: A closed form of hbim . Derived from hbimpgVD . (Contributed by Alan Sare, 8-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion hbimpg ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( ( 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 hba1 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) )
2 hba1 ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → ∀ 𝑥𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) )
3 1 2 hban ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) )
4 hbntal ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) )
5 4 adantr ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) )
6 5 19.21bi ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) )
7 pm2.21 ( ¬ 𝜑 → ( 𝜑𝜓 ) )
8 7 alimi ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ( 𝜑𝜓 ) )
9 6 8 syl6 ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ( ¬ 𝜑 → ∀ 𝑥 ( 𝜑𝜓 ) ) )
10 simpr ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) )
11 10 19.21bi ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ( 𝜓 → ∀ 𝑥 𝜓 ) )
12 ax-1 ( 𝜓 → ( 𝜑𝜓 ) )
13 12 alimi ( ∀ 𝑥 𝜓 → ∀ 𝑥 ( 𝜑𝜓 ) )
14 11 13 syl6 ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ( 𝜓 → ∀ 𝑥 ( 𝜑𝜓 ) ) )
15 9 14 jad ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ( ( 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) ) )
16 3 15 alrimih ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( ( 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) ) )