Description: Virtual deduction proof of hbimpg . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg is hbimpgVD without virtual deductions and was automatically derived from hbimpgVD . (Contributed by Alan Sare, 8-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| 1:: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ). | 
| 2:1: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. A. x ( ph -> A. x ph ) ). | 
| 3:: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) , -. ph ->. -. ph ). | 
| 4:2: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. A. x ( -. ph -> A. x -. ph ) ). | 
| 5:4: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( -. ph -> A. x -. ph ) ). | 
| 6:3,5: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) , -. ph ->. A. x -. ph ). | 
| 7:: | |- ( -. ph -> ( ph -> ps ) ) | 
| 8:7: | |- ( A. x -. ph -> A. x ( ph -> ps ) ) | 
| 9:6,8: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) , -. ph ->. A. x ( ph -> ps ) ). | 
| 10:9: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( -. ph -> A. x ( ph -> ps ) ) ). | 
| 11:: | |- ( ps -> ( ph -> ps ) ) | 
| 12:11: | |- ( A. x ps -> A. x ( ph -> ps ) ) | 
| 13:1: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. A. x ( ps -> A. x ps ) ). | 
| 14:13: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( ps -> A. x ps ) ). | 
| 15:14,12: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( ps -> A. x ( ph -> ps ) ) ). | 
| 16:10,15: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( ( -. ph \/ ps ) -> A. x ( ph -> ps ) ) ). | 
| 17:: | |- ( ( ph -> ps ) <-> ( -. ph \/ ps ) ) | 
| 18:16,17: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. ( ( ph -> ps ) -> A. x ( ph -> ps ) ) ). | 
| 19:: | |- ( A. x ( ph -> A. x ph ) -> A. x A. x ( ph -> A. x ph ) ) | 
| 20:: | |- ( A. x ( ps -> A. x ps ) -> A. x A. x ( ps -> A. x ps ) ) | 
| 21:19,20: | |- ( ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) -> A. x ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ) | 
| 22:21,18: | |- (. ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) ->. A. x ( ( ph -> ps ) -> A. x ( ph -> ps ) ) ). | 
| qed:22: | |- ( ( A. x ( ph -> A. x ph ) /\ A. x ( ps -> A. x ps ) ) -> A. x ( ( ph -> ps ) -> A. x ( ph -> ps ) ) ) | 
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hbimpgVD | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hba1 | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) | |
| 2 | hba1 | ⊢ ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) | |
| 3 | 1 2 | hban | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ) | 
| 4 | idn2 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) , ¬ 𝜑 ▶ ¬ 𝜑 ) | |
| 5 | idn1 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ) | |
| 6 | simpl | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) | |
| 7 | 5 6 | e1a | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) | 
| 8 | hbntal | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) | |
| 9 | 7 8 | e1a | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) | 
| 10 | sp | ⊢ ( ∀ 𝑥 ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) → ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) | |
| 11 | 9 10 | e1a | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ) | 
| 12 | pm2.27 | ⊢ ( ¬ 𝜑 → ( ( ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) → ∀ 𝑥 ¬ 𝜑 ) ) | |
| 13 | 4 11 12 | e21 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) , ¬ 𝜑 ▶ ∀ 𝑥 ¬ 𝜑 ) | 
| 14 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜓 ) ) | |
| 15 | 14 | alimi | ⊢ ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) | 
| 16 | 13 15 | e2 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) , ¬ 𝜑 ▶ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) | 
| 17 | 16 | in2 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( ¬ 𝜑 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) | 
| 18 | simpr | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) | |
| 19 | 5 18 | e1a | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) | 
| 20 | sp | ⊢ ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜓 ) ) | |
| 21 | 19 20 | e1a | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( 𝜓 → ∀ 𝑥 𝜓 ) ) | 
| 22 | ax-1 | ⊢ ( 𝜓 → ( 𝜑 → 𝜓 ) ) | |
| 23 | 22 | alimi | ⊢ ( ∀ 𝑥 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) | 
| 24 | imim1 | ⊢ ( ( 𝜓 → ∀ 𝑥 𝜓 ) → ( ( ∀ 𝑥 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) → ( 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) ) | |
| 25 | 21 23 24 | e10 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) | 
| 26 | jao | ⊢ ( ( ¬ 𝜑 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) → ( ( 𝜓 → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) → ( ( ¬ 𝜑 ∨ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) ) | |
| 27 | 17 25 26 | e11 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( ( ¬ 𝜑 ∨ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) | 
| 28 | imor | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) | |
| 29 | imbi1 | ⊢ ( ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) → ( ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ↔ ( ( ¬ 𝜑 ∨ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) ) | |
| 30 | 29 | biimprcd | ⊢ ( ( ( ¬ 𝜑 ∨ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) → ( ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 ∨ 𝜓 ) ) → ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) ) | 
| 31 | 27 28 30 | e10 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) | 
| 32 | 3 31 | gen11nv | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) ▶ ∀ 𝑥 ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) | 
| 33 | 32 | in1 | ⊢ ( ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ∧ ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) ) → ∀ 𝑥 ( ( 𝜑 → 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |