Metamath Proof Explorer


Theorem hhsssh2

Description: The predicate " H is a subspace of Hilbert space." (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hhsssh2.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
Assertion hhsssh2 ( 𝐻S ↔ ( 𝑊 ∈ NrmCVec ∧ 𝐻 ⊆ ℋ ) )

Proof

Step Hyp Ref Expression
1 hhsssh2.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
2 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
3 2 1 hhsssh ( 𝐻S ↔ ( 𝑊 ∈ ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ∧ 𝐻 ⊆ ℋ ) )
4 resss ( + ↾ ( 𝐻 × 𝐻 ) ) ⊆ +
5 resss ( · ↾ ( ℂ × 𝐻 ) ) ⊆ ·
6 resss ( norm𝐻 ) ⊆ norm
7 4 5 6 3pm3.2i ( ( + ↾ ( 𝐻 × 𝐻 ) ) ⊆ + ∧ ( · ↾ ( ℂ × 𝐻 ) ) ⊆ · ∧ ( norm𝐻 ) ⊆ norm )
8 2 hhnv ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ NrmCVec
9 2 hhva + = ( +𝑣 ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
10 1 hhssva ( + ↾ ( 𝐻 × 𝐻 ) ) = ( +𝑣𝑊 )
11 2 hhsm · = ( ·𝑠OLD ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
12 1 hhsssm ( · ↾ ( ℂ × 𝐻 ) ) = ( ·𝑠OLD𝑊 )
13 2 hhnm norm = ( normCV ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
14 1 hhssnm ( norm𝐻 ) = ( normCV𝑊 )
15 eqid ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) = ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
16 9 10 11 12 13 14 15 isssp ( ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ NrmCVec → ( 𝑊 ∈ ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ↔ ( 𝑊 ∈ NrmCVec ∧ ( ( + ↾ ( 𝐻 × 𝐻 ) ) ⊆ + ∧ ( · ↾ ( ℂ × 𝐻 ) ) ⊆ · ∧ ( norm𝐻 ) ⊆ norm ) ) ) )
17 8 16 ax-mp ( 𝑊 ∈ ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ↔ ( 𝑊 ∈ NrmCVec ∧ ( ( + ↾ ( 𝐻 × 𝐻 ) ) ⊆ + ∧ ( · ↾ ( ℂ × 𝐻 ) ) ⊆ · ∧ ( norm𝐻 ) ⊆ norm ) ) )
18 7 17 mpbiran2 ( 𝑊 ∈ ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ↔ 𝑊 ∈ NrmCVec )
19 18 anbi1i ( ( 𝑊 ∈ ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ∧ 𝐻 ⊆ ℋ ) ↔ ( 𝑊 ∈ NrmCVec ∧ 𝐻 ⊆ ℋ ) )
20 3 19 bitri ( 𝐻S ↔ ( 𝑊 ∈ NrmCVec ∧ 𝐻 ⊆ ℋ ) )