Metamath Proof Explorer


Theorem hhssva

Description: The vector addition operation on a subspace. (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hhss.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
Assertion hhssva ( + ↾ ( 𝐻 × 𝐻 ) ) = ( +𝑣𝑊 )

Proof

Step Hyp Ref Expression
1 hhss.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
2 eqid ( +𝑣𝑊 ) = ( +𝑣𝑊 )
3 2 vafval ( +𝑣𝑊 ) = ( 1st ‘ ( 1st𝑊 ) )
4 1 fveq2i ( 1st𝑊 ) = ( 1st ‘ ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ )
5 opex ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ ∈ V
6 normf norm : ℋ ⟶ ℝ
7 ax-hilex ℋ ∈ V
8 fex ( ( norm : ℋ ⟶ ℝ ∧ ℋ ∈ V ) → norm ∈ V )
9 6 7 8 mp2an norm ∈ V
10 9 resex ( norm𝐻 ) ∈ V
11 5 10 op1st ( 1st ‘ ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩ ) = ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩
12 4 11 eqtri ( 1st𝑊 ) = ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩
13 12 fveq2i ( 1st ‘ ( 1st𝑊 ) ) = ( 1st ‘ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ )
14 hilablo + ∈ AbelOp
15 resexg ( + ∈ AbelOp → ( + ↾ ( 𝐻 × 𝐻 ) ) ∈ V )
16 14 15 ax-mp ( + ↾ ( 𝐻 × 𝐻 ) ) ∈ V
17 hvmulex · ∈ V
18 17 resex ( · ↾ ( ℂ × 𝐻 ) ) ∈ V
19 16 18 op1st ( 1st ‘ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ ) = ( + ↾ ( 𝐻 × 𝐻 ) )
20 3 13 19 3eqtrri ( + ↾ ( 𝐻 × 𝐻 ) ) = ( +𝑣𝑊 )