Metamath Proof Explorer


Theorem hhsssh2

Description: The predicate " H is a subspace of Hilbert space." (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hhsssh2.1
|- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >.
Assertion hhsssh2
|- ( H e. SH <-> ( W e. NrmCVec /\ H C_ ~H ) )

Proof

Step Hyp Ref Expression
1 hhsssh2.1
 |-  W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >.
2 eqid
 |-  <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >.
3 2 1 hhsssh
 |-  ( H e. SH <-> ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) /\ H C_ ~H ) )
4 resss
 |-  ( +h |` ( H X. H ) ) C_ +h
5 resss
 |-  ( .h |` ( CC X. H ) ) C_ .h
6 resss
 |-  ( normh |` H ) C_ normh
7 4 5 6 3pm3.2i
 |-  ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh )
8 2 hhnv
 |-  <. <. +h , .h >. , normh >. e. NrmCVec
9 2 hhva
 |-  +h = ( +v ` <. <. +h , .h >. , normh >. )
10 1 hhssva
 |-  ( +h |` ( H X. H ) ) = ( +v ` W )
11 2 hhsm
 |-  .h = ( .sOLD ` <. <. +h , .h >. , normh >. )
12 1 hhsssm
 |-  ( .h |` ( CC X. H ) ) = ( .sOLD ` W )
13 2 hhnm
 |-  normh = ( normCV ` <. <. +h , .h >. , normh >. )
14 1 hhssnm
 |-  ( normh |` H ) = ( normCV ` W )
15 eqid
 |-  ( SubSp ` <. <. +h , .h >. , normh >. ) = ( SubSp ` <. <. +h , .h >. , normh >. )
16 9 10 11 12 13 14 15 isssp
 |-  ( <. <. +h , .h >. , normh >. e. NrmCVec -> ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) <-> ( W e. NrmCVec /\ ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) ) ) )
17 8 16 ax-mp
 |-  ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) <-> ( W e. NrmCVec /\ ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) ) )
18 7 17 mpbiran2
 |-  ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) <-> W e. NrmCVec )
19 18 anbi1i
 |-  ( ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) /\ H C_ ~H ) <-> ( W e. NrmCVec /\ H C_ ~H ) )
20 3 19 bitri
 |-  ( H e. SH <-> ( W e. NrmCVec /\ H C_ ~H ) )