| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhsssh2.1 |  |-  W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. | 
						
							| 2 |  | eqid |  |-  <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. | 
						
							| 3 | 2 1 | hhsssh |  |-  ( H e. SH <-> ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) /\ H C_ ~H ) ) | 
						
							| 4 |  | resss |  |-  ( +h |` ( H X. H ) ) C_ +h | 
						
							| 5 |  | resss |  |-  ( .h |` ( CC X. H ) ) C_ .h | 
						
							| 6 |  | resss |  |-  ( normh |` H ) C_ normh | 
						
							| 7 | 4 5 6 | 3pm3.2i |  |-  ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) | 
						
							| 8 | 2 | hhnv |  |-  <. <. +h , .h >. , normh >. e. NrmCVec | 
						
							| 9 | 2 | hhva |  |-  +h = ( +v ` <. <. +h , .h >. , normh >. ) | 
						
							| 10 | 1 | hhssva |  |-  ( +h |` ( H X. H ) ) = ( +v ` W ) | 
						
							| 11 | 2 | hhsm |  |-  .h = ( .sOLD ` <. <. +h , .h >. , normh >. ) | 
						
							| 12 | 1 | hhsssm |  |-  ( .h |` ( CC X. H ) ) = ( .sOLD ` W ) | 
						
							| 13 | 2 | hhnm |  |-  normh = ( normCV ` <. <. +h , .h >. , normh >. ) | 
						
							| 14 | 1 | hhssnm |  |-  ( normh |` H ) = ( normCV ` W ) | 
						
							| 15 |  | eqid |  |-  ( SubSp ` <. <. +h , .h >. , normh >. ) = ( SubSp ` <. <. +h , .h >. , normh >. ) | 
						
							| 16 | 9 10 11 12 13 14 15 | isssp |  |-  ( <. <. +h , .h >. , normh >. e. NrmCVec -> ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) <-> ( W e. NrmCVec /\ ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) ) ) ) | 
						
							| 17 | 8 16 | ax-mp |  |-  ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) <-> ( W e. NrmCVec /\ ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) ) ) | 
						
							| 18 | 7 17 | mpbiran2 |  |-  ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) <-> W e. NrmCVec ) | 
						
							| 19 | 18 | anbi1i |  |-  ( ( W e. ( SubSp ` <. <. +h , .h >. , normh >. ) /\ H C_ ~H ) <-> ( W e. NrmCVec /\ H C_ ~H ) ) | 
						
							| 20 | 3 19 | bitri |  |-  ( H e. SH <-> ( W e. NrmCVec /\ H C_ ~H ) ) |