| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hhsst.1 |  |-  U = <. <. +h , .h >. , normh >. | 
						
							| 2 |  | hhsst.2 |  |-  W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. | 
						
							| 3 | 1 2 | hhsst |  |-  ( H e. SH -> W e. ( SubSp ` U ) ) | 
						
							| 4 |  | shss |  |-  ( H e. SH -> H C_ ~H ) | 
						
							| 5 | 3 4 | jca |  |-  ( H e. SH -> ( W e. ( SubSp ` U ) /\ H C_ ~H ) ) | 
						
							| 6 |  | eleq1 |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( H e. SH <-> if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) e. SH ) ) | 
						
							| 7 |  | eqid |  |-  <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. = <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. | 
						
							| 8 |  | xpeq1 |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( H X. H ) = ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. H ) ) | 
						
							| 9 |  | xpeq2 |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. H ) = ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) | 
						
							| 10 | 8 9 | eqtrd |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( H X. H ) = ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) | 
						
							| 11 | 10 | reseq2d |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( +h |` ( H X. H ) ) = ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) ) | 
						
							| 12 |  | xpeq2 |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( CC X. H ) = ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) | 
						
							| 13 | 12 | reseq2d |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( .h |` ( CC X. H ) ) = ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) ) | 
						
							| 14 | 11 13 | opeq12d |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. = <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. ) | 
						
							| 15 |  | reseq2 |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( normh |` H ) = ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) | 
						
							| 16 | 14 15 | opeq12d |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. = <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. ) | 
						
							| 17 | 2 16 | eqtrid |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> W = <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. ) | 
						
							| 18 | 17 | eleq1d |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( W e. ( SubSp ` U ) <-> <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. e. ( SubSp ` U ) ) ) | 
						
							| 19 |  | sseq1 |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( H C_ ~H <-> if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) C_ ~H ) ) | 
						
							| 20 | 18 19 | anbi12d |  |-  ( H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) <-> ( <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. e. ( SubSp ` U ) /\ if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) C_ ~H ) ) ) | 
						
							| 21 |  | xpeq1 |  |-  ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( ~H X. ~H ) = ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. ~H ) ) | 
						
							| 22 |  | xpeq2 |  |-  ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. ~H ) = ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) | 
						
							| 23 | 21 22 | eqtrd |  |-  ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( ~H X. ~H ) = ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) | 
						
							| 24 | 23 | reseq2d |  |-  ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( +h |` ( ~H X. ~H ) ) = ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) ) | 
						
							| 25 |  | xpeq2 |  |-  ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( CC X. ~H ) = ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) | 
						
							| 26 | 25 | reseq2d |  |-  ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( .h |` ( CC X. ~H ) ) = ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) ) | 
						
							| 27 | 24 26 | opeq12d |  |-  ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. = <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. ) | 
						
							| 28 |  | reseq2 |  |-  ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( normh |` ~H ) = ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) | 
						
							| 29 | 27 28 | opeq12d |  |-  ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. = <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. ) | 
						
							| 30 | 29 | eleq1d |  |-  ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. e. ( SubSp ` U ) <-> <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. e. ( SubSp ` U ) ) ) | 
						
							| 31 |  | sseq1 |  |-  ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( ~H C_ ~H <-> if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) C_ ~H ) ) | 
						
							| 32 | 30 31 | anbi12d |  |-  ( ~H = if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) -> ( ( <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. e. ( SubSp ` U ) /\ ~H C_ ~H ) <-> ( <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. e. ( SubSp ` U ) /\ if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) C_ ~H ) ) ) | 
						
							| 33 |  | ax-hfvadd |  |-  +h : ( ~H X. ~H ) --> ~H | 
						
							| 34 |  | ffn |  |-  ( +h : ( ~H X. ~H ) --> ~H -> +h Fn ( ~H X. ~H ) ) | 
						
							| 35 |  | fnresdm |  |-  ( +h Fn ( ~H X. ~H ) -> ( +h |` ( ~H X. ~H ) ) = +h ) | 
						
							| 36 | 33 34 35 | mp2b |  |-  ( +h |` ( ~H X. ~H ) ) = +h | 
						
							| 37 |  | ax-hfvmul |  |-  .h : ( CC X. ~H ) --> ~H | 
						
							| 38 |  | ffn |  |-  ( .h : ( CC X. ~H ) --> ~H -> .h Fn ( CC X. ~H ) ) | 
						
							| 39 |  | fnresdm |  |-  ( .h Fn ( CC X. ~H ) -> ( .h |` ( CC X. ~H ) ) = .h ) | 
						
							| 40 | 37 38 39 | mp2b |  |-  ( .h |` ( CC X. ~H ) ) = .h | 
						
							| 41 | 36 40 | opeq12i |  |-  <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. = <. +h , .h >. | 
						
							| 42 |  | normf |  |-  normh : ~H --> RR | 
						
							| 43 |  | ffn |  |-  ( normh : ~H --> RR -> normh Fn ~H ) | 
						
							| 44 |  | fnresdm |  |-  ( normh Fn ~H -> ( normh |` ~H ) = normh ) | 
						
							| 45 | 42 43 44 | mp2b |  |-  ( normh |` ~H ) = normh | 
						
							| 46 | 41 45 | opeq12i |  |-  <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. = <. <. +h , .h >. , normh >. | 
						
							| 47 | 46 1 | eqtr4i |  |-  <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. = U | 
						
							| 48 | 1 | hhnv |  |-  U e. NrmCVec | 
						
							| 49 |  | eqid |  |-  ( SubSp ` U ) = ( SubSp ` U ) | 
						
							| 50 | 49 | sspid |  |-  ( U e. NrmCVec -> U e. ( SubSp ` U ) ) | 
						
							| 51 | 48 50 | ax-mp |  |-  U e. ( SubSp ` U ) | 
						
							| 52 | 47 51 | eqeltri |  |-  <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. e. ( SubSp ` U ) | 
						
							| 53 |  | ssid |  |-  ~H C_ ~H | 
						
							| 54 | 52 53 | pm3.2i |  |-  ( <. <. ( +h |` ( ~H X. ~H ) ) , ( .h |` ( CC X. ~H ) ) >. , ( normh |` ~H ) >. e. ( SubSp ` U ) /\ ~H C_ ~H ) | 
						
							| 55 | 20 32 54 | elimhyp |  |-  ( <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. e. ( SubSp ` U ) /\ if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) C_ ~H ) | 
						
							| 56 | 55 | simpli |  |-  <. <. ( +h |` ( if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) , ( .h |` ( CC X. if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) ) >. , ( normh |` if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) ) >. e. ( SubSp ` U ) | 
						
							| 57 | 55 | simpri |  |-  if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) C_ ~H | 
						
							| 58 | 1 7 56 57 | hhshsslem2 |  |-  if ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) , H , ~H ) e. SH | 
						
							| 59 | 6 58 | dedth |  |-  ( ( W e. ( SubSp ` U ) /\ H C_ ~H ) -> H e. SH ) | 
						
							| 60 | 5 59 | impbii |  |-  ( H e. SH <-> ( W e. ( SubSp ` U ) /\ H C_ ~H ) ) |