Description: The predicate " H is a subspace of Hilbert space." (Contributed by NM, 25-Mar-2008) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hhsst.1 | |
|
hhsst.2 | |
||
Assertion | hhsssh | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhsst.1 | |
|
2 | hhsst.2 | |
|
3 | 1 2 | hhsst | |
4 | shss | |
|
5 | 3 4 | jca | |
6 | eleq1 | |
|
7 | eqid | |
|
8 | xpeq1 | |
|
9 | xpeq2 | |
|
10 | 8 9 | eqtrd | |
11 | 10 | reseq2d | |
12 | xpeq2 | |
|
13 | 12 | reseq2d | |
14 | 11 13 | opeq12d | |
15 | reseq2 | |
|
16 | 14 15 | opeq12d | |
17 | 2 16 | eqtrid | |
18 | 17 | eleq1d | |
19 | sseq1 | |
|
20 | 18 19 | anbi12d | |
21 | xpeq1 | |
|
22 | xpeq2 | |
|
23 | 21 22 | eqtrd | |
24 | 23 | reseq2d | |
25 | xpeq2 | |
|
26 | 25 | reseq2d | |
27 | 24 26 | opeq12d | |
28 | reseq2 | |
|
29 | 27 28 | opeq12d | |
30 | 29 | eleq1d | |
31 | sseq1 | |
|
32 | 30 31 | anbi12d | |
33 | ax-hfvadd | |
|
34 | ffn | |
|
35 | fnresdm | |
|
36 | 33 34 35 | mp2b | |
37 | ax-hfvmul | |
|
38 | ffn | |
|
39 | fnresdm | |
|
40 | 37 38 39 | mp2b | |
41 | 36 40 | opeq12i | |
42 | normf | |
|
43 | ffn | |
|
44 | fnresdm | |
|
45 | 42 43 44 | mp2b | |
46 | 41 45 | opeq12i | |
47 | 46 1 | eqtr4i | |
48 | 1 | hhnv | |
49 | eqid | |
|
50 | 49 | sspid | |
51 | 48 50 | ax-mp | |
52 | 47 51 | eqeltri | |
53 | ssid | |
|
54 | 52 53 | pm3.2i | |
55 | 20 32 54 | elimhyp | |
56 | 55 | simpli | |
57 | 55 | simpri | |
58 | 1 7 56 57 | hhshsslem2 | |
59 | 6 58 | dedth | |
60 | 5 59 | impbii | |