Metamath Proof Explorer


Theorem hhshsslem2

Description: Lemma for hhsssh . (Contributed by NM, 6-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhsst.1 U=+norm
hhsst.2 W=+H×H×HnormH
hhssp3.3 WSubSpU
hhssp3.4 H
Assertion hhshsslem2 HS

Proof

Step Hyp Ref Expression
1 hhsst.1 U=+norm
2 hhsst.2 W=+H×H×HnormH
3 hhssp3.3 WSubSpU
4 hhssp3.4 H
5 1 hhnv UNrmCVec
6 1 hh0v 0=0vecU
7 eqid 0vecW=0vecW
8 eqid SubSpU=SubSpU
9 6 7 8 sspz UNrmCVecWSubSpU0vecW=0
10 5 3 9 mp2an 0vecW=0
11 8 sspnv UNrmCVecWSubSpUWNrmCVec
12 5 3 11 mp2an WNrmCVec
13 eqid BaseSetW=BaseSetW
14 13 7 nvzcl WNrmCVec0vecWBaseSetW
15 12 14 ax-mp 0vecWBaseSetW
16 1 2 3 4 hhshsslem1 H=BaseSetW
17 15 16 eleqtrri 0vecWH
18 10 17 eqeltrri 0H
19 4 18 pm3.2i H0H
20 1 hhva +=+vU
21 eqid +vW=+vW
22 16 20 21 8 sspgval UNrmCVecWSubSpUxHyHx+vWy=x+y
23 5 3 22 mpanl12 xHyHx+vWy=x+y
24 16 21 nvgcl WNrmCVecxHyHx+vWyH
25 12 24 mp3an1 xHyHx+vWyH
26 23 25 eqeltrrd xHyHx+yH
27 26 rgen2 xHyHx+yH
28 1 hhsm =𝑠OLDU
29 eqid 𝑠OLDW=𝑠OLDW
30 16 28 29 8 sspsval UNrmCVecWSubSpUxyHx𝑠OLDWy=xy
31 5 3 30 mpanl12 xyHx𝑠OLDWy=xy
32 16 29 nvscl WNrmCVecxyHx𝑠OLDWyH
33 12 32 mp3an1 xyHx𝑠OLDWyH
34 31 33 eqeltrrd xyHxyH
35 34 rgen2 xyHxyH
36 27 35 pm3.2i xHyHx+yHxyHxyH
37 issh2 HSH0HxHyHx+yHxyHxyH
38 19 36 37 mpbir2an HS