| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhgt4.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
hlhgt4.s |
⊢ < = ( lt ‘ 𝐾 ) |
| 3 |
|
hlhgt4.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
| 4 |
|
hlhgt4.u |
⊢ 1 = ( 1. ‘ 𝐾 ) |
| 5 |
1 2 3 4
|
hlhgt4 |
⊢ ( 𝐾 ∈ HL → ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) ∧ ( 𝑥 < 𝑧 ∧ 𝑧 < 1 ) ) ) |
| 6 |
|
hlpos |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Poset ) |
| 7 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
| 8 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 9 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 10 |
1 3
|
op0cl |
⊢ ( 𝐾 ∈ OP → 0 ∈ 𝐵 ) |
| 11 |
9 10
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 12 |
|
simpllr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 13 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 14 |
1 2
|
plttr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) → 0 < 𝑥 ) ) |
| 15 |
7 11 12 13 14
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) → 0 < 𝑥 ) ) |
| 16 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) |
| 17 |
1 4
|
op1cl |
⊢ ( 𝐾 ∈ OP → 1 ∈ 𝐵 ) |
| 18 |
9 17
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 1 ∈ 𝐵 ) |
| 19 |
1 2
|
plttr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 1 ∈ 𝐵 ) ) → ( ( 𝑥 < 𝑧 ∧ 𝑧 < 1 ) → 𝑥 < 1 ) ) |
| 20 |
7 13 16 18 19
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑥 < 𝑧 ∧ 𝑧 < 1 ) → 𝑥 < 1 ) ) |
| 21 |
15 20
|
anim12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) ∧ ( 𝑥 < 𝑧 ∧ 𝑧 < 1 ) ) → ( 0 < 𝑥 ∧ 𝑥 < 1 ) ) ) |
| 22 |
21
|
rexlimdva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) ∧ ( 𝑥 < 𝑧 ∧ 𝑧 < 1 ) ) → ( 0 < 𝑥 ∧ 𝑥 < 1 ) ) ) |
| 23 |
22
|
reximdva |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) ∧ ( 𝑥 < 𝑧 ∧ 𝑧 < 1 ) ) → ∃ 𝑥 ∈ 𝐵 ( 0 < 𝑥 ∧ 𝑥 < 1 ) ) ) |
| 24 |
23
|
rexlimdva |
⊢ ( 𝐾 ∈ HL → ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ( ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) ∧ ( 𝑥 < 𝑧 ∧ 𝑧 < 1 ) ) → ∃ 𝑥 ∈ 𝐵 ( 0 < 𝑥 ∧ 𝑥 < 1 ) ) ) |
| 25 |
5 24
|
mpd |
⊢ ( 𝐾 ∈ HL → ∃ 𝑥 ∈ 𝐵 ( 0 < 𝑥 ∧ 𝑥 < 1 ) ) |