Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑤 = 𝐴 → ( 𝐹 ⇝𝑣 𝑤 ↔ 𝐹 ⇝𝑣 𝐴 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑤 = 𝐴 → ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) = ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) |
3 |
2
|
fveq2d |
⊢ ( 𝑤 = 𝐴 → ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) = ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) ) |
4 |
3
|
breq1d |
⊢ ( 𝑤 = 𝐴 → ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ↔ ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
5 |
4
|
rexralbidv |
⊢ ( 𝑤 = 𝐴 → ( ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑤 = 𝐴 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
7 |
1 6
|
bibi12d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝐹 ⇝𝑣 𝑤 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) ↔ ( 𝐹 ⇝𝑣 𝐴 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝐹 : ℕ ⟶ ℋ → ( 𝐹 ⇝𝑣 𝑤 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) ) ↔ ( 𝐹 : ℕ ⟶ ℋ → ( 𝐹 ⇝𝑣 𝐴 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) ) ) |
9 |
|
vex |
⊢ 𝑤 ∈ V |
10 |
9
|
hlimi |
⊢ ( 𝐹 ⇝𝑣 𝑤 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) ) |
11 |
10
|
baib |
⊢ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝐹 ⇝𝑣 𝑤 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) ) |
12 |
11
|
expcom |
⊢ ( 𝑤 ∈ ℋ → ( 𝐹 : ℕ ⟶ ℋ → ( 𝐹 ⇝𝑣 𝑤 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) ) ) |
13 |
8 12
|
vtoclga |
⊢ ( 𝐴 ∈ ℋ → ( 𝐹 : ℕ ⟶ ℋ → ( 𝐹 ⇝𝑣 𝐴 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) ) |
14 |
13
|
impcom |
⊢ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐹 ⇝𝑣 𝐴 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |