| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 |  |-  ( w = A -> ( F ~~>v w <-> F ~~>v A ) ) | 
						
							| 2 |  | oveq2 |  |-  ( w = A -> ( ( F ` z ) -h w ) = ( ( F ` z ) -h A ) ) | 
						
							| 3 | 2 | fveq2d |  |-  ( w = A -> ( normh ` ( ( F ` z ) -h w ) ) = ( normh ` ( ( F ` z ) -h A ) ) ) | 
						
							| 4 | 3 | breq1d |  |-  ( w = A -> ( ( normh ` ( ( F ` z ) -h w ) ) < x <-> ( normh ` ( ( F ` z ) -h A ) ) < x ) ) | 
						
							| 5 | 4 | rexralbidv |  |-  ( w = A -> ( E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x <-> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) | 
						
							| 6 | 5 | ralbidv |  |-  ( w = A -> ( A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) | 
						
							| 7 | 1 6 | bibi12d |  |-  ( w = A -> ( ( F ~~>v w <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) <-> ( F ~~>v A <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) | 
						
							| 8 | 7 | imbi2d |  |-  ( w = A -> ( ( F : NN --> ~H -> ( F ~~>v w <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) ) <-> ( F : NN --> ~H -> ( F ~~>v A <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) ) | 
						
							| 9 |  | vex |  |-  w e. _V | 
						
							| 10 | 9 | hlimi |  |-  ( F ~~>v w <-> ( ( F : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) ) | 
						
							| 11 | 10 | baib |  |-  ( ( F : NN --> ~H /\ w e. ~H ) -> ( F ~~>v w <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) ) | 
						
							| 12 | 11 | expcom |  |-  ( w e. ~H -> ( F : NN --> ~H -> ( F ~~>v w <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h w ) ) < x ) ) ) | 
						
							| 13 | 8 12 | vtoclga |  |-  ( A e. ~H -> ( F : NN --> ~H -> ( F ~~>v A <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) | 
						
							| 14 | 13 | impcom |  |-  ( ( F : NN --> ~H /\ A e. ~H ) -> ( F ~~>v A <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |