| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlimadd.3 |  |-  ( ph -> F : NN --> ~H ) | 
						
							| 2 |  | hlimadd.4 |  |-  ( ph -> G : NN --> ~H ) | 
						
							| 3 |  | hlimadd.5 |  |-  ( ph -> F ~~>v A ) | 
						
							| 4 |  | hlimadd.6 |  |-  ( ph -> G ~~>v B ) | 
						
							| 5 |  | hlimadd.7 |  |-  H = ( n e. NN |-> ( ( F ` n ) +h ( G ` n ) ) ) | 
						
							| 6 | 1 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) e. ~H ) | 
						
							| 7 | 2 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( G ` n ) e. ~H ) | 
						
							| 8 |  | hvaddcl |  |-  ( ( ( F ` n ) e. ~H /\ ( G ` n ) e. ~H ) -> ( ( F ` n ) +h ( G ` n ) ) e. ~H ) | 
						
							| 9 | 6 7 8 | syl2anc |  |-  ( ( ph /\ n e. NN ) -> ( ( F ` n ) +h ( G ` n ) ) e. ~H ) | 
						
							| 10 | 9 5 | fmptd |  |-  ( ph -> H : NN --> ~H ) | 
						
							| 11 |  | ax-hilex |  |-  ~H e. _V | 
						
							| 12 |  | nnex |  |-  NN e. _V | 
						
							| 13 | 11 12 | elmap |  |-  ( H e. ( ~H ^m NN ) <-> H : NN --> ~H ) | 
						
							| 14 | 10 13 | sylibr |  |-  ( ph -> H e. ( ~H ^m NN ) ) | 
						
							| 15 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 16 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 17 |  | eqid |  |-  <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. | 
						
							| 18 |  | eqid |  |-  ( normh o. -h ) = ( normh o. -h ) | 
						
							| 19 | 17 18 | hhims |  |-  ( normh o. -h ) = ( IndMet ` <. <. +h , .h >. , normh >. ) | 
						
							| 20 | 17 19 | hhxmet |  |-  ( normh o. -h ) e. ( *Met ` ~H ) | 
						
							| 21 |  | eqid |  |-  ( MetOpen ` ( normh o. -h ) ) = ( MetOpen ` ( normh o. -h ) ) | 
						
							| 22 | 21 | mopntopon |  |-  ( ( normh o. -h ) e. ( *Met ` ~H ) -> ( MetOpen ` ( normh o. -h ) ) e. ( TopOn ` ~H ) ) | 
						
							| 23 | 20 22 | mp1i |  |-  ( ph -> ( MetOpen ` ( normh o. -h ) ) e. ( TopOn ` ~H ) ) | 
						
							| 24 | 17 | hhnv |  |-  <. <. +h , .h >. , normh >. e. NrmCVec | 
						
							| 25 |  | df-hba |  |-  ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) | 
						
							| 26 | 17 24 25 19 21 | h2hlm |  |-  ~~>v = ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) | 
						
							| 27 |  | resss |  |-  ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) | 
						
							| 28 | 26 27 | eqsstri |  |-  ~~>v C_ ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) | 
						
							| 29 | 28 | ssbri |  |-  ( F ~~>v A -> F ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) A ) | 
						
							| 30 | 3 29 | syl |  |-  ( ph -> F ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) A ) | 
						
							| 31 | 28 | ssbri |  |-  ( G ~~>v B -> G ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) B ) | 
						
							| 32 | 4 31 | syl |  |-  ( ph -> G ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) B ) | 
						
							| 33 | 17 | hhva |  |-  +h = ( +v ` <. <. +h , .h >. , normh >. ) | 
						
							| 34 | 19 21 33 | vacn |  |-  ( <. <. +h , .h >. , normh >. e. NrmCVec -> +h e. ( ( ( MetOpen ` ( normh o. -h ) ) tX ( MetOpen ` ( normh o. -h ) ) ) Cn ( MetOpen ` ( normh o. -h ) ) ) ) | 
						
							| 35 | 24 34 | mp1i |  |-  ( ph -> +h e. ( ( ( MetOpen ` ( normh o. -h ) ) tX ( MetOpen ` ( normh o. -h ) ) ) Cn ( MetOpen ` ( normh o. -h ) ) ) ) | 
						
							| 36 | 15 16 23 23 1 2 30 32 35 5 | lmcn2 |  |-  ( ph -> H ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( A +h B ) ) | 
						
							| 37 | 26 | breqi |  |-  ( H ~~>v ( A +h B ) <-> H ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) ( A +h B ) ) | 
						
							| 38 |  | ovex |  |-  ( A +h B ) e. _V | 
						
							| 39 | 38 | brresi |  |-  ( H ( ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) |` ( ~H ^m NN ) ) ( A +h B ) <-> ( H e. ( ~H ^m NN ) /\ H ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( A +h B ) ) ) | 
						
							| 40 | 37 39 | bitri |  |-  ( H ~~>v ( A +h B ) <-> ( H e. ( ~H ^m NN ) /\ H ( ~~>t ` ( MetOpen ` ( normh o. -h ) ) ) ( A +h B ) ) ) | 
						
							| 41 | 14 36 40 | sylanbrc |  |-  ( ph -> H ~~>v ( A +h B ) ) |