Metamath Proof Explorer


Theorem hlimadd

Description: Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hlimadd.3 φF:
hlimadd.4 φG:
hlimadd.5 φFvA
hlimadd.6 φGvB
hlimadd.7 H=nFn+Gn
Assertion hlimadd φHvA+B

Proof

Step Hyp Ref Expression
1 hlimadd.3 φF:
2 hlimadd.4 φG:
3 hlimadd.5 φFvA
4 hlimadd.6 φGvB
5 hlimadd.7 H=nFn+Gn
6 1 ffvelcdmda φnFn
7 2 ffvelcdmda φnGn
8 hvaddcl FnGnFn+Gn
9 6 7 8 syl2anc φnFn+Gn
10 9 5 fmptd φH:
11 ax-hilex V
12 nnex V
13 11 12 elmap HH:
14 10 13 sylibr φH
15 nnuz =1
16 1zzd φ1
17 eqid +norm=+norm
18 eqid norm-=norm-
19 17 18 hhims norm-=IndMet+norm
20 17 19 hhxmet norm-∞Met
21 eqid MetOpennorm-=MetOpennorm-
22 21 mopntopon norm-∞MetMetOpennorm-TopOn
23 20 22 mp1i φMetOpennorm-TopOn
24 17 hhnv +normNrmCVec
25 df-hba =BaseSet+norm
26 17 24 25 19 21 h2hlm v=tMetOpennorm-
27 resss tMetOpennorm-tMetOpennorm-
28 26 27 eqsstri vtMetOpennorm-
29 28 ssbri FvAFtMetOpennorm-A
30 3 29 syl φFtMetOpennorm-A
31 28 ssbri GvBGtMetOpennorm-B
32 4 31 syl φGtMetOpennorm-B
33 17 hhva +=+v+norm
34 19 21 33 vacn +normNrmCVec+MetOpennorm-×tMetOpennorm-CnMetOpennorm-
35 24 34 mp1i φ+MetOpennorm-×tMetOpennorm-CnMetOpennorm-
36 15 16 23 23 1 2 30 32 35 5 lmcn2 φHtMetOpennorm-A+B
37 26 breqi HvA+BHtMetOpennorm-A+B
38 ovex A+BV
39 38 brresi HtMetOpennorm-A+BHHtMetOpennorm-A+B
40 37 39 bitri HvA+BHHtMetOpennorm-A+B
41 14 36 40 sylanbrc φHvA+B