| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmeocnvcn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) |
| 2 |
|
hmeocn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 4 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 5 |
3 4
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 6 |
|
frel |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → Rel 𝐹 ) |
| 7 |
2 5 6
|
3syl |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → Rel 𝐹 ) |
| 8 |
|
dfrel2 |
⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) |
| 9 |
7 8
|
sylib |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ ◡ 𝐹 = 𝐹 ) |
| 10 |
9 2
|
eqeltrd |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ ◡ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 11 |
|
ishmeo |
⊢ ( ◡ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ↔ ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ ◡ ◡ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 12 |
1 10 11
|
sylanbrc |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Homeo 𝐽 ) ) |