| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sdomdom | ⊢ ( 𝑥  ≺  𝑋  →  𝑥  ≼  𝑋 ) | 
						
							| 2 | 1 | ralimi | ⊢ ( ∀ 𝑥  ∈  ( TC ‘ { 𝑠 } ) 𝑥  ≺  𝑋  →  ∀ 𝑥  ∈  ( TC ‘ { 𝑠 } ) 𝑥  ≼  𝑋 ) | 
						
							| 3 | 2 | ss2abi | ⊢ { 𝑠  ∣  ∀ 𝑥  ∈  ( TC ‘ { 𝑠 } ) 𝑥  ≺  𝑋 }  ⊆  { 𝑠  ∣  ∀ 𝑥  ∈  ( TC ‘ { 𝑠 } ) 𝑥  ≼  𝑋 } | 
						
							| 4 |  | hsmex2 | ⊢ ( 𝑋  ∈  𝑉  →  { 𝑠  ∣  ∀ 𝑥  ∈  ( TC ‘ { 𝑠 } ) 𝑥  ≼  𝑋 }  ∈  V ) | 
						
							| 5 |  | ssexg | ⊢ ( ( { 𝑠  ∣  ∀ 𝑥  ∈  ( TC ‘ { 𝑠 } ) 𝑥  ≺  𝑋 }  ⊆  { 𝑠  ∣  ∀ 𝑥  ∈  ( TC ‘ { 𝑠 } ) 𝑥  ≼  𝑋 }  ∧  { 𝑠  ∣  ∀ 𝑥  ∈  ( TC ‘ { 𝑠 } ) 𝑥  ≼  𝑋 }  ∈  V )  →  { 𝑠  ∣  ∀ 𝑥  ∈  ( TC ‘ { 𝑠 } ) 𝑥  ≺  𝑋 }  ∈  V ) | 
						
							| 6 | 3 4 5 | sylancr | ⊢ ( 𝑋  ∈  𝑉  →  { 𝑠  ∣  ∀ 𝑥  ∈  ( TC ‘ { 𝑠 } ) 𝑥  ≺  𝑋 }  ∈  V ) |