| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fposd.1 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ 𝐴 ) ∈ dom ∫1 ) |
| 2 |
|
nfcv |
⊢ Ⅎ 𝑥 0 |
| 3 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
| 4 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) |
| 5 |
2 3 4
|
nfbr |
⊢ Ⅎ 𝑥 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) |
| 6 |
5 4 2
|
nfif |
⊢ Ⅎ 𝑥 if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑦 if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , 0 ) |
| 8 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) ) |
| 9 |
8
|
breq2d |
⊢ ( 𝑦 = 𝑥 → ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) ↔ 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) ) ) |
| 10 |
9 8
|
ifbieq1d |
⊢ ( 𝑦 = 𝑥 → if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) = if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , 0 ) ) |
| 11 |
6 7 10
|
cbvmpt |
⊢ ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , 0 ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 13 |
|
i1ff |
⊢ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ∈ dom ∫1 → ( 𝑥 ∈ ℝ ↦ 𝐴 ) : ℝ ⟶ ℝ ) |
| 14 |
1 13
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ 𝐴 ) : ℝ ⟶ ℝ ) |
| 15 |
14
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 16 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ 𝐴 ) = ( 𝑥 ∈ ℝ ↦ 𝐴 ) |
| 17 |
16
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 18 |
12 15 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 19 |
18
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) ↔ 0 ≤ 𝐴 ) ) |
| 20 |
19 18
|
ifbieq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , 0 ) = if ( 0 ≤ 𝐴 , 𝐴 , 0 ) ) |
| 21 |
20
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ 𝐴 , 𝐴 , 0 ) ) ) |
| 22 |
11 21
|
eqtrid |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ 𝐴 , 𝐴 , 0 ) ) ) |
| 23 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) ) = ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) ) |
| 24 |
23
|
i1fpos |
⊢ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ∈ dom ∫1 → ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) ) ∈ dom ∫1 ) |
| 25 |
1 24
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , ( ( 𝑥 ∈ ℝ ↦ 𝐴 ) ‘ 𝑦 ) , 0 ) ) ∈ dom ∫1 ) |
| 26 |
22 25
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 0 ≤ 𝐴 , 𝐴 , 0 ) ) ∈ dom ∫1 ) |