Metamath Proof Explorer


Theorem iccssico2

Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015)

Ref Expression
Assertion iccssico2 ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-ico [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
2 1 elmpocl1 ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐴 ∈ ℝ* )
3 2 adantr ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐴 ∈ ℝ* )
4 1 elmpocl2 ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐵 ∈ ℝ* )
5 4 adantr ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐵 ∈ ℝ* )
6 1 elixx3g ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ ( 𝐴𝐶𝐶 < 𝐵 ) ) )
7 6 simprbi ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐴𝐶𝐶 < 𝐵 ) )
8 7 simpld ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) → 𝐴𝐶 )
9 8 adantr ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐴𝐶 )
10 1 elixx3g ( 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ* ) ∧ ( 𝐴𝐷𝐷 < 𝐵 ) ) )
11 10 simprbi ( 𝐷 ∈ ( 𝐴 [,) 𝐵 ) → ( 𝐴𝐷𝐷 < 𝐵 ) )
12 11 simprd ( 𝐷 ∈ ( 𝐴 [,) 𝐵 ) → 𝐷 < 𝐵 )
13 12 adantl ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐷 < 𝐵 )
14 iccssico ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴𝐶𝐷 < 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,) 𝐵 ) )
15 3 5 9 13 14 syl22anc ( ( 𝐶 ∈ ( 𝐴 [,) 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,) 𝐵 ) )