Metamath Proof Explorer


Theorem iccsupr

Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum (see suprcl ). (Contributed by Paul Chapman, 21-Jan-2008)

Ref Expression
Assertion iccsupr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶𝑆 ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑆 𝑦𝑥 ) )

Proof

Step Hyp Ref Expression
1 iccssre ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
2 sstr ( ( 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → 𝑆 ⊆ ℝ )
3 2 ancoms ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → 𝑆 ⊆ ℝ )
4 1 3 sylan ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → 𝑆 ⊆ ℝ )
5 4 3adant3 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶𝑆 ) → 𝑆 ⊆ ℝ )
6 ne0i ( 𝐶𝑆𝑆 ≠ ∅ )
7 6 3ad2ant3 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶𝑆 ) → 𝑆 ≠ ∅ )
8 simplr ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ )
9 ssel ( 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) → ( 𝑦𝑆𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) )
10 elicc2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵 ) ) )
11 10 biimpd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( 𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵 ) ) )
12 9 11 sylan9r ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → ( 𝑦𝑆 → ( 𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵 ) ) )
13 12 imp ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦𝑆 ) → ( 𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵 ) )
14 13 simp3d ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) ∧ 𝑦𝑆 ) → 𝑦𝐵 )
15 14 ralrimiva ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → ∀ 𝑦𝑆 𝑦𝐵 )
16 brralrspcev ( ( 𝐵 ∈ ℝ ∧ ∀ 𝑦𝑆 𝑦𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑆 𝑦𝑥 )
17 8 15 16 syl2anc ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑆 𝑦𝑥 )
18 17 3adant3 ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶𝑆 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑆 𝑦𝑥 )
19 5 7 18 3jca ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑆 ⊆ ( 𝐴 [,] 𝐵 ) ∧ 𝐶𝑆 ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑆 𝑦𝑥 ) )