| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idmon.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | idmon.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | idmon.i | ⊢  1   =  ( Id ‘ 𝐶 ) | 
						
							| 4 |  | idmon.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 5 |  | idmon.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | idepi.e | ⊢ 𝐸  =  ( Epi ‘ 𝐶 ) | 
						
							| 7 | 1 2 3 4 5 | catidcl | ⊢ ( 𝜑  →  (  1  ‘ 𝑋 )  ∈  ( 𝑋 𝐻 𝑋 ) ) | 
						
							| 8 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑧 )  ∧  ℎ  ∈  ( 𝑋 𝐻 𝑧 ) ) )  →  𝐶  ∈  Cat ) | 
						
							| 9 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑧 )  ∧  ℎ  ∈  ( 𝑋 𝐻 𝑧 ) ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 11 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑧 )  ∧  ℎ  ∈  ( 𝑋 𝐻 𝑧 ) ) )  →  𝑧  ∈  𝐵 ) | 
						
							| 12 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑧 )  ∧  ℎ  ∈  ( 𝑋 𝐻 𝑧 ) ) )  →  𝑔  ∈  ( 𝑋 𝐻 𝑧 ) ) | 
						
							| 13 | 1 2 3 8 9 10 11 12 | catrid | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑧 )  ∧  ℎ  ∈  ( 𝑋 𝐻 𝑧 ) ) )  →  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) (  1  ‘ 𝑋 ) )  =  𝑔 ) | 
						
							| 14 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑧 )  ∧  ℎ  ∈  ( 𝑋 𝐻 𝑧 ) ) )  →  ℎ  ∈  ( 𝑋 𝐻 𝑧 ) ) | 
						
							| 15 | 1 2 3 8 9 10 11 14 | catrid | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑧 )  ∧  ℎ  ∈  ( 𝑋 𝐻 𝑧 ) ) )  →  ( ℎ ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) (  1  ‘ 𝑋 ) )  =  ℎ ) | 
						
							| 16 | 13 15 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑧 )  ∧  ℎ  ∈  ( 𝑋 𝐻 𝑧 ) ) )  →  ( ( 𝑔 ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) (  1  ‘ 𝑋 ) )  =  ( ℎ ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) (  1  ‘ 𝑋 ) )  ↔  𝑔  =  ℎ ) ) | 
						
							| 17 | 16 | biimpd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑔  ∈  ( 𝑋 𝐻 𝑧 )  ∧  ℎ  ∈  ( 𝑋 𝐻 𝑧 ) ) )  →  ( ( 𝑔 ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) (  1  ‘ 𝑋 ) )  =  ( ℎ ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) (  1  ‘ 𝑋 ) )  →  𝑔  =  ℎ ) ) | 
						
							| 18 | 17 | ralrimivvva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ∀ 𝑔  ∈  ( 𝑋 𝐻 𝑧 ) ∀ ℎ  ∈  ( 𝑋 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) (  1  ‘ 𝑋 ) )  =  ( ℎ ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) (  1  ‘ 𝑋 ) )  →  𝑔  =  ℎ ) ) | 
						
							| 19 | 1 2 10 6 4 5 5 | isepi2 | ⊢ ( 𝜑  →  ( (  1  ‘ 𝑋 )  ∈  ( 𝑋 𝐸 𝑋 )  ↔  ( (  1  ‘ 𝑋 )  ∈  ( 𝑋 𝐻 𝑋 )  ∧  ∀ 𝑧  ∈  𝐵 ∀ 𝑔  ∈  ( 𝑋 𝐻 𝑧 ) ∀ ℎ  ∈  ( 𝑋 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) (  1  ‘ 𝑋 ) )  =  ( ℎ ( 〈 𝑋 ,  𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) (  1  ‘ 𝑋 ) )  →  𝑔  =  ℎ ) ) ) ) | 
						
							| 20 | 7 18 19 | mpbir2and | ⊢ ( 𝜑  →  (  1  ‘ 𝑋 )  ∈  ( 𝑋 𝐸 𝑋 ) ) |