Step |
Hyp |
Ref |
Expression |
1 |
|
idmon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
idmon.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
idmon.i |
⊢ 1 = ( Id ‘ 𝐶 ) |
4 |
|
idmon.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
|
idmon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
idepi.e |
⊢ 𝐸 = ( Epi ‘ 𝐶 ) |
7 |
1 2 3 4 5
|
catidcl |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑧 ) ) ) → 𝐶 ∈ Cat ) |
9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑧 ) ) ) → 𝑋 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
11 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑧 ) ) ) → 𝑧 ∈ 𝐵 ) |
12 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑋 𝐻 𝑧 ) ) |
13 |
1 2 3 8 9 10 11 12
|
catrid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 1 ‘ 𝑋 ) ) = 𝑔 ) |
14 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑧 ) ) ) → ℎ ∈ ( 𝑋 𝐻 𝑧 ) ) |
15 |
1 2 3 8 9 10 11 14
|
catrid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑧 ) ) ) → ( ℎ ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 1 ‘ 𝑋 ) ) = ℎ ) |
16 |
13 15
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑧 ) ) ) → ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 1 ‘ 𝑋 ) ) = ( ℎ ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 1 ‘ 𝑋 ) ) ↔ 𝑔 = ℎ ) ) |
17 |
16
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑧 ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑧 ) ) ) → ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 1 ‘ 𝑋 ) ) = ( ℎ ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 1 ‘ 𝑋 ) ) → 𝑔 = ℎ ) ) |
18 |
17
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑧 ) ∀ ℎ ∈ ( 𝑋 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 1 ‘ 𝑋 ) ) = ( ℎ ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 1 ‘ 𝑋 ) ) → 𝑔 = ℎ ) ) |
19 |
1 2 10 6 4 5 5
|
isepi2 |
⊢ ( 𝜑 → ( ( 1 ‘ 𝑋 ) ∈ ( 𝑋 𝐸 𝑋 ) ↔ ( ( 1 ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑧 ) ∀ ℎ ∈ ( 𝑋 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 1 ‘ 𝑋 ) ) = ( ℎ ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 1 ‘ 𝑋 ) ) → 𝑔 = ℎ ) ) ) ) |
20 |
7 18 19
|
mpbir2and |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) ∈ ( 𝑋 𝐸 𝑋 ) ) |