| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idmon.b |  |-  B = ( Base ` C ) | 
						
							| 2 |  | idmon.h |  |-  H = ( Hom ` C ) | 
						
							| 3 |  | idmon.i |  |-  .1. = ( Id ` C ) | 
						
							| 4 |  | idmon.c |  |-  ( ph -> C e. Cat ) | 
						
							| 5 |  | idmon.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | idepi.e |  |-  E = ( Epi ` C ) | 
						
							| 7 | 1 2 3 4 5 | catidcl |  |-  ( ph -> ( .1. ` X ) e. ( X H X ) ) | 
						
							| 8 | 4 | adantr |  |-  ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> C e. Cat ) | 
						
							| 9 | 5 | adantr |  |-  ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> X e. B ) | 
						
							| 10 |  | eqid |  |-  ( comp ` C ) = ( comp ` C ) | 
						
							| 11 |  | simpr1 |  |-  ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> z e. B ) | 
						
							| 12 |  | simpr2 |  |-  ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> g e. ( X H z ) ) | 
						
							| 13 | 1 2 3 8 9 10 11 12 | catrid |  |-  ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> ( g ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) = g ) | 
						
							| 14 |  | simpr3 |  |-  ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> h e. ( X H z ) ) | 
						
							| 15 | 1 2 3 8 9 10 11 14 | catrid |  |-  ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> ( h ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) = h ) | 
						
							| 16 | 13 15 | eqeq12d |  |-  ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> ( ( g ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) = ( h ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) <-> g = h ) ) | 
						
							| 17 | 16 | biimpd |  |-  ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> ( ( g ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) = ( h ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) -> g = h ) ) | 
						
							| 18 | 17 | ralrimivvva |  |-  ( ph -> A. z e. B A. g e. ( X H z ) A. h e. ( X H z ) ( ( g ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) = ( h ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) -> g = h ) ) | 
						
							| 19 | 1 2 10 6 4 5 5 | isepi2 |  |-  ( ph -> ( ( .1. ` X ) e. ( X E X ) <-> ( ( .1. ` X ) e. ( X H X ) /\ A. z e. B A. g e. ( X H z ) A. h e. ( X H z ) ( ( g ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) = ( h ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) -> g = h ) ) ) ) | 
						
							| 20 | 7 18 19 | mpbir2and |  |-  ( ph -> ( .1. ` X ) e. ( X E X ) ) |