Step |
Hyp |
Ref |
Expression |
1 |
|
idmon.b |
|- B = ( Base ` C ) |
2 |
|
idmon.h |
|- H = ( Hom ` C ) |
3 |
|
idmon.i |
|- .1. = ( Id ` C ) |
4 |
|
idmon.c |
|- ( ph -> C e. Cat ) |
5 |
|
idmon.x |
|- ( ph -> X e. B ) |
6 |
|
idepi.e |
|- E = ( Epi ` C ) |
7 |
1 2 3 4 5
|
catidcl |
|- ( ph -> ( .1. ` X ) e. ( X H X ) ) |
8 |
4
|
adantr |
|- ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> C e. Cat ) |
9 |
5
|
adantr |
|- ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> X e. B ) |
10 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
11 |
|
simpr1 |
|- ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> z e. B ) |
12 |
|
simpr2 |
|- ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> g e. ( X H z ) ) |
13 |
1 2 3 8 9 10 11 12
|
catrid |
|- ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> ( g ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) = g ) |
14 |
|
simpr3 |
|- ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> h e. ( X H z ) ) |
15 |
1 2 3 8 9 10 11 14
|
catrid |
|- ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> ( h ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) = h ) |
16 |
13 15
|
eqeq12d |
|- ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> ( ( g ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) = ( h ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) <-> g = h ) ) |
17 |
16
|
biimpd |
|- ( ( ph /\ ( z e. B /\ g e. ( X H z ) /\ h e. ( X H z ) ) ) -> ( ( g ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) = ( h ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) -> g = h ) ) |
18 |
17
|
ralrimivvva |
|- ( ph -> A. z e. B A. g e. ( X H z ) A. h e. ( X H z ) ( ( g ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) = ( h ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) -> g = h ) ) |
19 |
1 2 10 6 4 5 5
|
isepi2 |
|- ( ph -> ( ( .1. ` X ) e. ( X E X ) <-> ( ( .1. ` X ) e. ( X H X ) /\ A. z e. B A. g e. ( X H z ) A. h e. ( X H z ) ( ( g ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) = ( h ( <. X , X >. ( comp ` C ) z ) ( .1. ` X ) ) -> g = h ) ) ) ) |
20 |
7 18 19
|
mpbir2and |
|- ( ph -> ( .1. ` X ) e. ( X E X ) ) |