Metamath Proof Explorer


Theorem idepi

Description: An identity arrow, or an identity morphism, is an epimorphism. (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses idmon.b B = Base C
idmon.h H = Hom C
idmon.i 1 ˙ = Id C
idmon.c φ C Cat
idmon.x φ X B
idepi.e E = Epi C
Assertion idepi φ 1 ˙ X X E X

Proof

Step Hyp Ref Expression
1 idmon.b B = Base C
2 idmon.h H = Hom C
3 idmon.i 1 ˙ = Id C
4 idmon.c φ C Cat
5 idmon.x φ X B
6 idepi.e E = Epi C
7 1 2 3 4 5 catidcl φ 1 ˙ X X H X
8 4 adantr φ z B g X H z h X H z C Cat
9 5 adantr φ z B g X H z h X H z X B
10 eqid comp C = comp C
11 simpr1 φ z B g X H z h X H z z B
12 simpr2 φ z B g X H z h X H z g X H z
13 1 2 3 8 9 10 11 12 catrid φ z B g X H z h X H z g X X comp C z 1 ˙ X = g
14 simpr3 φ z B g X H z h X H z h X H z
15 1 2 3 8 9 10 11 14 catrid φ z B g X H z h X H z h X X comp C z 1 ˙ X = h
16 13 15 eqeq12d φ z B g X H z h X H z g X X comp C z 1 ˙ X = h X X comp C z 1 ˙ X g = h
17 16 biimpd φ z B g X H z h X H z g X X comp C z 1 ˙ X = h X X comp C z 1 ˙ X g = h
18 17 ralrimivvva φ z B g X H z h X H z g X X comp C z 1 ˙ X = h X X comp C z 1 ˙ X g = h
19 1 2 10 6 4 5 5 isepi2 φ 1 ˙ X X E X 1 ˙ X X H X z B g X H z h X H z g X X comp C z 1 ˙ X = h X X comp C z 1 ˙ X g = h
20 7 18 19 mpbir2and φ 1 ˙ X X E X