| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfiin3g | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  On  →  ∩  𝑥  ∈  𝐴 𝐵  =  ∩  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  On  ∧  𝐴  ≠  ∅ )  →  ∩  𝑥  ∈  𝐴 𝐵  =  ∩  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 3 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 4 | 3 | rnmptss | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  On  →  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  On ) | 
						
							| 5 |  | dm0rn0 | ⊢ ( dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅  ↔  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅ ) | 
						
							| 6 |  | dmmptg | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  On  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  On  →  ( dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅  ↔  𝐴  =  ∅ ) ) | 
						
							| 8 | 5 7 | bitr3id | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  On  →  ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ∅  ↔  𝐴  =  ∅ ) ) | 
						
							| 9 | 8 | necon3bid | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  On  →  ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ≠  ∅  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 10 | 9 | biimpar | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  On  ∧  𝐴  ≠  ∅ )  →  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ≠  ∅ ) | 
						
							| 11 |  | oninton | ⊢ ( ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  On  ∧  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ≠  ∅ )  →  ∩  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  On ) | 
						
							| 12 | 4 10 11 | syl2an2r | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  On  ∧  𝐴  ≠  ∅ )  →  ∩  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  On ) | 
						
							| 13 | 2 12 | eqeltrd | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  On  ∧  𝐴  ≠  ∅ )  →  ∩  𝑥  ∈  𝐴 𝐵  ∈  On ) |