Metamath Proof Explorer


Theorem iinon

Description: The nonempty indexed intersection of a class of ordinal numbers B ( x ) is an ordinal number. (Contributed by NM, 13-Oct-2003) (Proof shortened by Mario Carneiro, 5-Dec-2016)

Ref Expression
Assertion iinon xABOnAxABOn

Proof

Step Hyp Ref Expression
1 dfiin3g xABOnxAB=ranxAB
2 1 adantr xABOnAxAB=ranxAB
3 eqid xAB=xAB
4 3 rnmptss xABOnranxABOn
5 dm0rn0 domxAB=ranxAB=
6 dmmptg xABOndomxAB=A
7 6 eqeq1d xABOndomxAB=A=
8 5 7 bitr3id xABOnranxAB=A=
9 8 necon3bid xABOnranxABA
10 9 biimpar xABOnAranxAB
11 oninton ranxABOnranxABranxABOn
12 4 10 11 syl2an2r xABOnAranxABOn
13 2 12 eqeltrd xABOnAxABOn