Metamath Proof Explorer


Theorem onfununi

Description: A property of functions on ordinal numbers. Generalization of Theorem Schema 8E of Enderton p. 218. (Contributed by Eric Schmidt, 26-May-2009)

Ref Expression
Hypotheses onfununi.1 LimyFy=xyFx
onfununi.2 xOnyOnxyFxFy
Assertion onfununi STSOnSFS=xSFx

Proof

Step Hyp Ref Expression
1 onfununi.1 LimyFy=xyFx
2 onfununi.2 xOnyOnxyFxFy
3 ssorduni SOnOrdS
4 3 ad2antrr SOn¬SSSOrdS
5 nelneq xS¬SS¬x=S
6 elssuni xSxS
7 6 adantl SOnxSxS
8 ssel SOnxSxOn
9 eloni xOnOrdx
10 8 9 syl6 SOnxSOrdx
11 10 imp SOnxSOrdx
12 ordsseleq OrdxOrdSxSxSx=S
13 11 3 12 syl2an SOnxSSOnxSxSx=S
14 13 anabss1 SOnxSxSxSx=S
15 7 14 mpbid SOnxSxSx=S
16 15 ord SOnxS¬xSx=S
17 16 con1d SOnxS¬x=SxS
18 5 17 syl5 SOnxSxS¬SSxS
19 18 exp4b SOnxSxS¬SSxS
20 19 pm2.43d SOnxS¬SSxS
21 20 com23 SOn¬SSxSxS
22 21 imp SOn¬SSxSxS
23 22 ssrdv SOn¬SSSS
24 ssn0 SSSS
25 23 24 sylan SOn¬SSSS
26 23 unissd SOn¬SSSS
27 orduniss OrdSSS
28 3 27 syl SOnSS
29 28 adantr SOn¬SSSS
30 26 29 eqssd SOn¬SSS=S
31 30 adantr SOn¬SSSS=S
32 df-lim LimSOrdSSS=S
33 4 25 31 32 syl3anbrc SOn¬SSSLimS
34 33 an32s SOnS¬SSLimS
35 34 3adantl1 STSOnS¬SSLimS
36 ssonuni STSOnSOn
37 limeq y=SLimyLimS
38 fveq2 y=SFy=FS
39 iuneq1 y=SxyFx=xSFx
40 38 39 eqeq12d y=SFy=xyFxFS=xSFx
41 37 40 imbi12d y=SLimyFy=xyFxLimSFS=xSFx
42 41 1 vtoclg SOnLimSFS=xSFx
43 36 42 syl6 STSOnLimSFS=xSFx
44 43 imp STSOnLimSFS=xSFx
45 44 3adant3 STSOnSLimSFS=xSFx
46 45 adantr STSOnS¬SSLimSFS=xSFx
47 35 46 mpd STSOnS¬SSFS=xSFx
48 eluni2 xSySxy
49 ssel SOnySyOn
50 49 anim1d SOnySxyyOnxy
51 onelon yOnxyxOn
52 50 51 syl6 SOnySxyxOn
53 49 adantrd SOnySxyyOn
54 eloni yOnOrdy
55 49 54 syl6 SOnySOrdy
56 ordelss Ordyxyxy
57 56 a1i SOnOrdyxyxy
58 55 57 syland SOnySxyxy
59 52 53 58 3jcad SOnySxyxOnyOnxy
60 59 2 syl6 SOnySxyFxFy
61 60 expd SOnySxyFxFy
62 61 reximdvai SOnySxyySFxFy
63 48 62 biimtrid SOnxSySFxFy
64 ssiun ySFxFyFxySFy
65 63 64 syl6 SOnxSFxySFy
66 65 ralrimiv SOnxSFxySFy
67 iunss xSFxySFyxSFxySFy
68 66 67 sylibr SOnxSFxySFy
69 fveq2 y=xFy=Fx
70 69 cbviunv ySFy=xSFx
71 68 70 sseqtrdi SOnxSFxxSFx
72 71 3ad2ant2 STSOnSxSFxxSFx
73 72 adantr STSOnS¬SSxSFxxSFx
74 47 73 eqsstrd STSOnS¬SSFSxSFx
75 74 ex STSOnS¬SSFSxSFx
76 fveq2 x=SFx=FS
77 76 ssiun2s SSFSxSFx
78 75 77 pm2.61d2 STSOnSFSxSFx
79 36 imp STSOnSOn
80 79 3adant3 STSOnSSOn
81 8 3ad2ant2 STSOnSxSxOn
82 81 6 jca2 STSOnSxSxOnxS
83 sseq2 y=SxyxS
84 83 anbi2d y=SxOnxyxOnxS
85 38 sseq2d y=SFxFyFxFS
86 84 85 imbi12d y=SxOnxyFxFyxOnxSFxFS
87 2 3com12 yOnxOnxyFxFy
88 87 3expib yOnxOnxyFxFy
89 86 88 vtoclga SOnxOnxSFxFS
90 80 82 89 sylsyld STSOnSxSFxFS
91 90 ralrimiv STSOnSxSFxFS
92 iunss xSFxFSxSFxFS
93 91 92 sylibr STSOnSxSFxFS
94 78 93 eqssd STSOnSFS=xSFx