| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imaeqexov.1 |
⊢ ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) → 𝜑 ) ) |
| 3 |
|
ovelimab |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) ) ) |
| 4 |
3
|
imbi1d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) → 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) ) |
| 5 |
4
|
albidv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) → 𝜑 ) ↔ ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) ) |
| 6 |
2 5
|
bitrid |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) ) |
| 7 |
|
ralcom4 |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) |
| 8 |
|
r19.23v |
⊢ ( ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) |
| 9 |
8
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) |
| 10 |
|
r19.23v |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) |
| 11 |
9 10
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) |
| 12 |
11
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) |
| 13 |
7 12
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) |
| 14 |
|
ralcom4 |
⊢ ( ∀ 𝑧 ∈ 𝐶 ∀ 𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ) |
| 15 |
|
ovex |
⊢ ( 𝑦 𝐹 𝑧 ) ∈ V |
| 16 |
15 1
|
ceqsalv |
⊢ ( ∀ 𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ 𝜓 ) |
| 17 |
16
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝐶 ∀ 𝑥 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑧 ∈ 𝐶 𝜓 ) |
| 18 |
14 17
|
bitr3i |
⊢ ( ∀ 𝑥 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑧 ∈ 𝐶 𝜓 ) |
| 19 |
18
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∀ 𝑧 ∈ 𝐶 ( 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜓 ) |
| 20 |
13 19
|
bitr3i |
⊢ ( ∀ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑥 = ( 𝑦 𝐹 𝑧 ) → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜓 ) |
| 21 |
6 20
|
bitrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝐵 × 𝐶 ) ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ ( 𝐵 × 𝐶 ) ) 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜓 ) ) |