Step |
Hyp |
Ref |
Expression |
1 |
|
ancom |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐴 ∈ ℂ ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) ) |
2 |
|
3anass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) ) |
3 |
1 2
|
bitr4i |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐴 ∈ ℂ ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) |
4 |
|
rereccl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℝ ) |
5 |
4
|
anim1i |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐴 ∈ ℂ ) → ( ( 1 / 𝐵 ) ∈ ℝ ∧ 𝐴 ∈ ℂ ) ) |
6 |
3 5
|
sylbir |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ( 1 / 𝐵 ) ∈ ℝ ∧ 𝐴 ∈ ℂ ) ) |
7 |
|
immul2 |
⊢ ( ( ( 1 / 𝐵 ) ∈ ℝ ∧ 𝐴 ∈ ℂ ) → ( ℑ ‘ ( ( 1 / 𝐵 ) · 𝐴 ) ) = ( ( 1 / 𝐵 ) · ( ℑ ‘ 𝐴 ) ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ℑ ‘ ( ( 1 / 𝐵 ) · 𝐴 ) ) = ( ( 1 / 𝐵 ) · ( ℑ ‘ 𝐴 ) ) ) |
9 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
10 |
|
divrec2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( ( 1 / 𝐵 ) · 𝐴 ) ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ℑ ‘ ( 𝐴 / 𝐵 ) ) = ( ℑ ‘ ( ( 1 / 𝐵 ) · 𝐴 ) ) ) |
12 |
9 11
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ℑ ‘ ( 𝐴 / 𝐵 ) ) = ( ℑ ‘ ( ( 1 / 𝐵 ) · 𝐴 ) ) ) |
13 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
14 |
13
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
16 |
9
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
17 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 ) |
18 |
15 16 17
|
divrec2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ( ℑ ‘ 𝐴 ) / 𝐵 ) = ( ( 1 / 𝐵 ) · ( ℑ ‘ 𝐴 ) ) ) |
19 |
8 12 18
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ℑ ‘ ( 𝐴 / 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) / 𝐵 ) ) |