| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infiso.1 |
⊢ ( 𝜑 → 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 2 |
|
infiso.2 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 3 |
|
infiso.3 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐶 𝑧 𝑅 𝑦 ) ) ) |
| 4 |
|
infiso.4 |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
| 5 |
|
isocnv2 |
⊢ ( 𝐹 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐹 Isom ◡ 𝑅 , ◡ 𝑆 ( 𝐴 , 𝐵 ) ) |
| 6 |
1 5
|
sylib |
⊢ ( 𝜑 → 𝐹 Isom ◡ 𝑅 , ◡ 𝑆 ( 𝐴 , 𝐵 ) ) |
| 7 |
4 3
|
infcllem |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐶 𝑦 ◡ 𝑅 𝑧 ) ) ) |
| 8 |
|
cnvso |
⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) |
| 9 |
4 8
|
sylib |
⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
| 10 |
6 2 7 9
|
supiso |
⊢ ( 𝜑 → sup ( ( 𝐹 “ 𝐶 ) , 𝐵 , ◡ 𝑆 ) = ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , ◡ 𝑅 ) ) ) |
| 11 |
|
df-inf |
⊢ inf ( ( 𝐹 “ 𝐶 ) , 𝐵 , 𝑆 ) = sup ( ( 𝐹 “ 𝐶 ) , 𝐵 , ◡ 𝑆 ) |
| 12 |
|
df-inf |
⊢ inf ( 𝐶 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , ◡ 𝑅 ) |
| 13 |
12
|
fveq2i |
⊢ ( 𝐹 ‘ inf ( 𝐶 , 𝐴 , 𝑅 ) ) = ( 𝐹 ‘ sup ( 𝐶 , 𝐴 , ◡ 𝑅 ) ) |
| 14 |
10 11 13
|
3eqtr4g |
⊢ ( 𝜑 → inf ( ( 𝐹 “ 𝐶 ) , 𝐵 , 𝑆 ) = ( 𝐹 ‘ inf ( 𝐶 , 𝐴 , 𝑅 ) ) ) |