Step |
Hyp |
Ref |
Expression |
1 |
|
ioorf.1 |
⊢ 𝐹 = ( 𝑥 ∈ ran (,) ↦ if ( 𝑥 = ∅ , ⟨ 0 , 0 ⟩ , ⟨ inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) ⟩ ) ) |
2 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
3 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
4 |
|
ovelrn |
⊢ ( (,) Fn ( ℝ* × ℝ* ) → ( 𝐴 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝐴 = ( 𝑎 (,) 𝑏 ) ) ) |
5 |
2 3 4
|
mp2b |
⊢ ( 𝐴 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝐴 = ( 𝑎 (,) 𝑏 ) ) |
6 |
1
|
ioorinv2 |
⊢ ( ( 𝑎 (,) 𝑏 ) ≠ ∅ → ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) = ⟨ 𝑎 , 𝑏 ⟩ ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝑎 (,) 𝑏 ) ≠ ∅ → ( (,) ‘ ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) ) = ( (,) ‘ ⟨ 𝑎 , 𝑏 ⟩ ) ) |
8 |
|
df-ov |
⊢ ( 𝑎 (,) 𝑏 ) = ( (,) ‘ ⟨ 𝑎 , 𝑏 ⟩ ) |
9 |
7 8
|
eqtr4di |
⊢ ( ( 𝑎 (,) 𝑏 ) ≠ ∅ → ( (,) ‘ ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) ) = ( 𝑎 (,) 𝑏 ) ) |
10 |
|
df-ne |
⊢ ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ ) |
11 |
|
neeq1 |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( 𝐴 ≠ ∅ ↔ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) ) |
12 |
10 11
|
bitr3id |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ¬ 𝐴 = ∅ ↔ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) ) |
13 |
|
2fveq3 |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( (,) ‘ ( 𝐹 ‘ 𝐴 ) ) = ( (,) ‘ ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) ) ) |
14 |
|
id |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → 𝐴 = ( 𝑎 (,) 𝑏 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( (,) ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝐴 ↔ ( (,) ‘ ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) ) = ( 𝑎 (,) 𝑏 ) ) ) |
16 |
12 15
|
imbi12d |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( ¬ 𝐴 = ∅ → ( (,) ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝐴 ) ↔ ( ( 𝑎 (,) 𝑏 ) ≠ ∅ → ( (,) ‘ ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) ) = ( 𝑎 (,) 𝑏 ) ) ) ) |
17 |
9 16
|
mpbiri |
⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ¬ 𝐴 = ∅ → ( (,) ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝐴 ) ) |
18 |
17
|
a1i |
⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ¬ 𝐴 = ∅ → ( (,) ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝐴 ) ) ) |
19 |
18
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ¬ 𝐴 = ∅ → ( (,) ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝐴 ) ) |
20 |
5 19
|
sylbi |
⊢ ( 𝐴 ∈ ran (,) → ( ¬ 𝐴 = ∅ → ( (,) ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝐴 ) ) |
21 |
|
ioorebas |
⊢ ( 0 (,) 0 ) ∈ ran (,) |
22 |
1
|
ioorval |
⊢ ( ( 0 (,) 0 ) ∈ ran (,) → ( 𝐹 ‘ ( 0 (,) 0 ) ) = if ( ( 0 (,) 0 ) = ∅ , ⟨ 0 , 0 ⟩ , ⟨ inf ( ( 0 (,) 0 ) , ℝ* , < ) , sup ( ( 0 (,) 0 ) , ℝ* , < ) ⟩ ) ) |
23 |
21 22
|
ax-mp |
⊢ ( 𝐹 ‘ ( 0 (,) 0 ) ) = if ( ( 0 (,) 0 ) = ∅ , ⟨ 0 , 0 ⟩ , ⟨ inf ( ( 0 (,) 0 ) , ℝ* , < ) , sup ( ( 0 (,) 0 ) , ℝ* , < ) ⟩ ) |
24 |
|
iooid |
⊢ ( 0 (,) 0 ) = ∅ |
25 |
24
|
iftruei |
⊢ if ( ( 0 (,) 0 ) = ∅ , ⟨ 0 , 0 ⟩ , ⟨ inf ( ( 0 (,) 0 ) , ℝ* , < ) , sup ( ( 0 (,) 0 ) , ℝ* , < ) ⟩ ) = ⟨ 0 , 0 ⟩ |
26 |
23 25
|
eqtri |
⊢ ( 𝐹 ‘ ( 0 (,) 0 ) ) = ⟨ 0 , 0 ⟩ |
27 |
26
|
fveq2i |
⊢ ( (,) ‘ ( 𝐹 ‘ ( 0 (,) 0 ) ) ) = ( (,) ‘ ⟨ 0 , 0 ⟩ ) |
28 |
|
df-ov |
⊢ ( 0 (,) 0 ) = ( (,) ‘ ⟨ 0 , 0 ⟩ ) |
29 |
27 28
|
eqtr4i |
⊢ ( (,) ‘ ( 𝐹 ‘ ( 0 (,) 0 ) ) ) = ( 0 (,) 0 ) |
30 |
24
|
eqeq2i |
⊢ ( 𝐴 = ( 0 (,) 0 ) ↔ 𝐴 = ∅ ) |
31 |
30
|
biimpri |
⊢ ( 𝐴 = ∅ → 𝐴 = ( 0 (,) 0 ) ) |
32 |
31
|
fveq2d |
⊢ ( 𝐴 = ∅ → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( 0 (,) 0 ) ) ) |
33 |
32
|
fveq2d |
⊢ ( 𝐴 = ∅ → ( (,) ‘ ( 𝐹 ‘ 𝐴 ) ) = ( (,) ‘ ( 𝐹 ‘ ( 0 (,) 0 ) ) ) ) |
34 |
29 33 31
|
3eqtr4a |
⊢ ( 𝐴 = ∅ → ( (,) ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝐴 ) |
35 |
20 34
|
pm2.61d2 |
⊢ ( 𝐴 ∈ ran (,) → ( (,) ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝐴 ) |