| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldif |
⊢ ( 𝐴 ∈ ( ℝ ∖ ℚ ) ↔ ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ ) ) |
| 2 |
|
qre |
⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℝ ) |
| 3 |
|
readdcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 4 |
2 3
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 5 |
4
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ ) ∧ 𝐵 ∈ ℚ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 6 |
|
qsubcl |
⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℚ ) |
| 7 |
6
|
expcom |
⊢ ( 𝐵 ∈ ℚ → ( ( 𝐴 + 𝐵 ) ∈ ℚ → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℚ ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) ∈ ℚ → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℚ ) ) |
| 9 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 10 |
|
qcn |
⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) |
| 11 |
|
pncan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
| 12 |
9 10 11
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
| 13 |
12
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℚ ↔ 𝐴 ∈ ℚ ) ) |
| 14 |
8 13
|
sylibd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) ∈ ℚ → 𝐴 ∈ ℚ ) ) |
| 15 |
14
|
con3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℚ ) → ( ¬ 𝐴 ∈ ℚ → ¬ ( 𝐴 + 𝐵 ) ∈ ℚ ) ) |
| 16 |
15
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℚ → ( ¬ 𝐴 ∈ ℚ → ¬ ( 𝐴 + 𝐵 ) ∈ ℚ ) ) ) |
| 17 |
16
|
com23 |
⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 ∈ ℚ → ( 𝐵 ∈ ℚ → ¬ ( 𝐴 + 𝐵 ) ∈ ℚ ) ) ) |
| 18 |
17
|
imp31 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ ) ∧ 𝐵 ∈ ℚ ) → ¬ ( 𝐴 + 𝐵 ) ∈ ℚ ) |
| 19 |
5 18
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ ) ∧ 𝐵 ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 + 𝐵 ) ∈ ℚ ) ) |
| 20 |
1 19
|
sylanb |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ℚ ) ∧ 𝐵 ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 + 𝐵 ) ∈ ℚ ) ) |
| 21 |
|
eldif |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ( ℝ ∖ ℚ ) ↔ ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 + 𝐵 ) ∈ ℚ ) ) |
| 22 |
20 21
|
sylibr |
⊢ ( ( 𝐴 ∈ ( ℝ ∖ ℚ ) ∧ 𝐵 ∈ ℚ ) → ( 𝐴 + 𝐵 ) ∈ ( ℝ ∖ ℚ ) ) |