| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lnoval.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | lnoval.2 | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | lnoval.3 | ⊢ 𝐺  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 4 |  | lnoval.4 | ⊢ 𝐻  =  (  +𝑣  ‘ 𝑊 ) | 
						
							| 5 |  | lnoval.5 | ⊢ 𝑅  =  (  ·𝑠OLD  ‘ 𝑈 ) | 
						
							| 6 |  | lnoval.6 | ⊢ 𝑆  =  (  ·𝑠OLD  ‘ 𝑊 ) | 
						
							| 7 |  | lnoval.7 | ⊢ 𝐿  =  ( 𝑈  LnOp  𝑊 ) | 
						
							| 8 | 1 2 3 4 5 6 7 | lnoval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  𝐿  =  { 𝑤  ∈  ( 𝑌  ↑m  𝑋 )  ∣  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) } ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  ( 𝑇  ∈  𝐿  ↔  𝑇  ∈  { 𝑤  ∈  ( 𝑌  ↑m  𝑋 )  ∣  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) } ) ) | 
						
							| 10 |  | fveq1 | ⊢ ( 𝑤  =  𝑇  →  ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑤  =  𝑇  →  ( 𝑤 ‘ 𝑦 )  =  ( 𝑇 ‘ 𝑦 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑤  =  𝑇  →  ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) )  =  ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) ) | 
						
							| 13 |  | fveq1 | ⊢ ( 𝑤  =  𝑇  →  ( 𝑤 ‘ 𝑧 )  =  ( 𝑇 ‘ 𝑧 ) ) | 
						
							| 14 | 12 13 | oveq12d | ⊢ ( 𝑤  =  𝑇  →  ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) | 
						
							| 15 | 10 14 | eqeq12d | ⊢ ( 𝑤  =  𝑇  →  ( ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) )  ↔  ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 16 | 15 | 2ralbidv | ⊢ ( 𝑤  =  𝑇  →  ( ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) )  ↔  ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 17 | 16 | ralbidv | ⊢ ( 𝑤  =  𝑇  →  ( ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) )  ↔  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 18 | 17 | elrab | ⊢ ( 𝑇  ∈  { 𝑤  ∈  ( 𝑌  ↑m  𝑋 )  ∣  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) }  ↔  ( 𝑇  ∈  ( 𝑌  ↑m  𝑋 )  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 19 | 2 | fvexi | ⊢ 𝑌  ∈  V | 
						
							| 20 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 21 | 19 20 | elmap | ⊢ ( 𝑇  ∈  ( 𝑌  ↑m  𝑋 )  ↔  𝑇 : 𝑋 ⟶ 𝑌 ) | 
						
							| 22 | 21 | anbi1i | ⊢ ( ( 𝑇  ∈  ( 𝑌  ↑m  𝑋 )  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) )  ↔  ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 23 | 18 22 | bitri | ⊢ ( 𝑇  ∈  { 𝑤  ∈  ( 𝑌  ↑m  𝑋 )  ∣  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑤 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑤 ‘ 𝑦 ) ) 𝐻 ( 𝑤 ‘ 𝑧 ) ) }  ↔  ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 24 | 9 23 | bitrdi | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  ( 𝑇  ∈  𝐿  ↔  ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑥  ∈  ℂ ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( 𝑇 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) )  =  ( ( 𝑥 𝑆 ( 𝑇 ‘ 𝑦 ) ) 𝐻 ( 𝑇 ‘ 𝑧 ) ) ) ) ) |