| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnoval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
lnoval.2 |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
| 3 |
|
lnoval.3 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
| 4 |
|
lnoval.4 |
⊢ 𝐻 = ( +𝑣 ‘ 𝑊 ) |
| 5 |
|
lnoval.5 |
⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑈 ) |
| 6 |
|
lnoval.6 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑊 ) |
| 7 |
|
lnoval.7 |
⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) |
| 8 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = ( BaseSet ‘ 𝑈 ) ) |
| 9 |
8 1
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = 𝑋 ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑢 = 𝑈 → ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) = ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( +𝑣 ‘ 𝑢 ) = ( +𝑣 ‘ 𝑈 ) ) |
| 12 |
11 3
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( +𝑣 ‘ 𝑢 ) = 𝐺 ) |
| 13 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( ·𝑠OLD ‘ 𝑢 ) = ( ·𝑠OLD ‘ 𝑈 ) ) |
| 14 |
13 5
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( ·𝑠OLD ‘ 𝑢 ) = 𝑅 ) |
| 15 |
14
|
oveqd |
⊢ ( 𝑢 = 𝑈 → ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) = ( 𝑥 𝑅 𝑦 ) ) |
| 16 |
|
eqidd |
⊢ ( 𝑢 = 𝑈 → 𝑧 = 𝑧 ) |
| 17 |
12 15 16
|
oveq123d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) = ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) |
| 18 |
17
|
fveqeq2d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 19 |
9 18
|
raleqbidv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 20 |
9 19
|
raleqbidv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 21 |
20
|
ralbidv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 22 |
10 21
|
rabeqbidv |
⊢ ( 𝑢 = 𝑈 → { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } = { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } ) |
| 23 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( BaseSet ‘ 𝑤 ) = ( BaseSet ‘ 𝑊 ) ) |
| 24 |
23 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( BaseSet ‘ 𝑤 ) = 𝑌 ) |
| 25 |
24
|
oveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) = ( 𝑌 ↑m 𝑋 ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( +𝑣 ‘ 𝑤 ) = ( +𝑣 ‘ 𝑊 ) ) |
| 27 |
26 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( +𝑣 ‘ 𝑤 ) = 𝐻 ) |
| 28 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠OLD ‘ 𝑤 ) = ( ·𝑠OLD ‘ 𝑊 ) ) |
| 29 |
28 6
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠OLD ‘ 𝑤 ) = 𝑆 ) |
| 30 |
29
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) ) |
| 31 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → ( 𝑡 ‘ 𝑧 ) = ( 𝑡 ‘ 𝑧 ) ) |
| 32 |
27 30 31
|
oveq123d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) ) |
| 33 |
32
|
eqeq2d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 34 |
33
|
2ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 35 |
34
|
ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) ) ) |
| 36 |
25 35
|
rabeqbidv |
⊢ ( 𝑤 = 𝑊 → { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } = { 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) } ) |
| 37 |
|
df-lno |
⊢ LnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } ) |
| 38 |
|
ovex |
⊢ ( 𝑌 ↑m 𝑋 ) ∈ V |
| 39 |
38
|
rabex |
⊢ { 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) } ∈ V |
| 40 |
22 36 37 39
|
ovmpo |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 LnOp 𝑊 ) = { 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) } ) |
| 41 |
7 40
|
eqtrid |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐿 = { 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑡 ‘ ( ( 𝑥 𝑅 𝑦 ) 𝐺 𝑧 ) ) = ( ( 𝑥 𝑆 ( 𝑡 ‘ 𝑦 ) ) 𝐻 ( 𝑡 ‘ 𝑧 ) ) } ) |