Metamath Proof Explorer


Theorem islssfgi

Description: Finitely spanned subspaces are finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses islssfgi.n 𝑁 = ( LSpan ‘ 𝑊 )
islssfgi.v 𝑉 = ( Base ‘ 𝑊 )
islssfgi.x 𝑋 = ( 𝑊s ( 𝑁𝐵 ) )
Assertion islssfgi ( ( 𝑊 ∈ LMod ∧ 𝐵𝑉𝐵 ∈ Fin ) → 𝑋 ∈ LFinGen )

Proof

Step Hyp Ref Expression
1 islssfgi.n 𝑁 = ( LSpan ‘ 𝑊 )
2 islssfgi.v 𝑉 = ( Base ‘ 𝑊 )
3 islssfgi.x 𝑋 = ( 𝑊s ( 𝑁𝐵 ) )
4 2 fvexi 𝑉 ∈ V
5 4 elpw2 ( 𝐵 ∈ 𝒫 𝑉𝐵𝑉 )
6 5 biimpri ( 𝐵𝑉𝐵 ∈ 𝒫 𝑉 )
7 6 3ad2ant2 ( ( 𝑊 ∈ LMod ∧ 𝐵𝑉𝐵 ∈ Fin ) → 𝐵 ∈ 𝒫 𝑉 )
8 simp3 ( ( 𝑊 ∈ LMod ∧ 𝐵𝑉𝐵 ∈ Fin ) → 𝐵 ∈ Fin )
9 7 8 elind ( ( 𝑊 ∈ LMod ∧ 𝐵𝑉𝐵 ∈ Fin ) → 𝐵 ∈ ( 𝒫 𝑉 ∩ Fin ) )
10 eqid ( 𝑁𝐵 ) = ( 𝑁𝐵 )
11 fveqeq2 ( 𝑎 = 𝐵 → ( ( 𝑁𝑎 ) = ( 𝑁𝐵 ) ↔ ( 𝑁𝐵 ) = ( 𝑁𝐵 ) ) )
12 11 rspcev ( ( 𝐵 ∈ ( 𝒫 𝑉 ∩ Fin ) ∧ ( 𝑁𝐵 ) = ( 𝑁𝐵 ) ) → ∃ 𝑎 ∈ ( 𝒫 𝑉 ∩ Fin ) ( 𝑁𝑎 ) = ( 𝑁𝐵 ) )
13 9 10 12 sylancl ( ( 𝑊 ∈ LMod ∧ 𝐵𝑉𝐵 ∈ Fin ) → ∃ 𝑎 ∈ ( 𝒫 𝑉 ∩ Fin ) ( 𝑁𝑎 ) = ( 𝑁𝐵 ) )
14 simp1 ( ( 𝑊 ∈ LMod ∧ 𝐵𝑉𝐵 ∈ Fin ) → 𝑊 ∈ LMod )
15 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
16 2 15 1 lspcl ( ( 𝑊 ∈ LMod ∧ 𝐵𝑉 ) → ( 𝑁𝐵 ) ∈ ( LSubSp ‘ 𝑊 ) )
17 16 3adant3 ( ( 𝑊 ∈ LMod ∧ 𝐵𝑉𝐵 ∈ Fin ) → ( 𝑁𝐵 ) ∈ ( LSubSp ‘ 𝑊 ) )
18 3 15 1 2 islssfg2 ( ( 𝑊 ∈ LMod ∧ ( 𝑁𝐵 ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑋 ∈ LFinGen ↔ ∃ 𝑎 ∈ ( 𝒫 𝑉 ∩ Fin ) ( 𝑁𝑎 ) = ( 𝑁𝐵 ) ) )
19 14 17 18 syl2anc ( ( 𝑊 ∈ LMod ∧ 𝐵𝑉𝐵 ∈ Fin ) → ( 𝑋 ∈ LFinGen ↔ ∃ 𝑎 ∈ ( 𝒫 𝑉 ∩ Fin ) ( 𝑁𝑎 ) = ( 𝑁𝐵 ) ) )
20 13 19 mpbird ( ( 𝑊 ∈ LMod ∧ 𝐵𝑉𝐵 ∈ Fin ) → 𝑋 ∈ LFinGen )