Metamath Proof Explorer


Theorem islssfgi

Description: Finitely spanned subspaces are finitely generated. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses islssfgi.n N=LSpanW
islssfgi.v V=BaseW
islssfgi.x X=W𝑠NB
Assertion islssfgi WLModBVBFinXLFinGen

Proof

Step Hyp Ref Expression
1 islssfgi.n N=LSpanW
2 islssfgi.v V=BaseW
3 islssfgi.x X=W𝑠NB
4 2 fvexi VV
5 4 elpw2 B𝒫VBV
6 5 biimpri BVB𝒫V
7 6 3ad2ant2 WLModBVBFinB𝒫V
8 simp3 WLModBVBFinBFin
9 7 8 elind WLModBVBFinB𝒫VFin
10 eqid NB=NB
11 fveqeq2 a=BNa=NBNB=NB
12 11 rspcev B𝒫VFinNB=NBa𝒫VFinNa=NB
13 9 10 12 sylancl WLModBVBFina𝒫VFinNa=NB
14 simp1 WLModBVBFinWLMod
15 eqid LSubSpW=LSubSpW
16 2 15 1 lspcl WLModBVNBLSubSpW
17 16 3adant3 WLModBVBFinNBLSubSpW
18 3 15 1 2 islssfg2 WLModNBLSubSpWXLFinGena𝒫VFinNa=NB
19 14 17 18 syl2anc WLModBVBFinXLFinGena𝒫VFinNa=NB
20 13 19 mpbird WLModBVBFinXLFinGen