Metamath Proof Explorer


Theorem isorel

Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004)

Ref Expression
Assertion isorel ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝐶 𝑅 𝐷 ↔ ( 𝐻𝐶 ) 𝑆 ( 𝐻𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 df-isom ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )
2 1 simprbi ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) )
3 breq1 ( 𝑥 = 𝐶 → ( 𝑥 𝑅 𝑦𝐶 𝑅 𝑦 ) )
4 fveq2 ( 𝑥 = 𝐶 → ( 𝐻𝑥 ) = ( 𝐻𝐶 ) )
5 4 breq1d ( 𝑥 = 𝐶 → ( ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ↔ ( 𝐻𝐶 ) 𝑆 ( 𝐻𝑦 ) ) )
6 3 5 bibi12d ( 𝑥 = 𝐶 → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ↔ ( 𝐶 𝑅 𝑦 ↔ ( 𝐻𝐶 ) 𝑆 ( 𝐻𝑦 ) ) ) )
7 breq2 ( 𝑦 = 𝐷 → ( 𝐶 𝑅 𝑦𝐶 𝑅 𝐷 ) )
8 fveq2 ( 𝑦 = 𝐷 → ( 𝐻𝑦 ) = ( 𝐻𝐷 ) )
9 8 breq2d ( 𝑦 = 𝐷 → ( ( 𝐻𝐶 ) 𝑆 ( 𝐻𝑦 ) ↔ ( 𝐻𝐶 ) 𝑆 ( 𝐻𝐷 ) ) )
10 7 9 bibi12d ( 𝑦 = 𝐷 → ( ( 𝐶 𝑅 𝑦 ↔ ( 𝐻𝐶 ) 𝑆 ( 𝐻𝑦 ) ) ↔ ( 𝐶 𝑅 𝐷 ↔ ( 𝐻𝐶 ) 𝑆 ( 𝐻𝐷 ) ) ) )
11 6 10 rspc2v ( ( 𝐶𝐴𝐷𝐴 ) → ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) → ( 𝐶 𝑅 𝐷 ↔ ( 𝐻𝐶 ) 𝑆 ( 𝐻𝐷 ) ) ) )
12 2 11 mpan9 ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝐶𝐴𝐷𝐴 ) ) → ( 𝐶 𝑅 𝐷 ↔ ( 𝐻𝐶 ) 𝑆 ( 𝐻𝐷 ) ) )