Metamath Proof Explorer


Theorem iunab

Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004)

Ref Expression
Assertion iunab 𝑥𝐴 { 𝑦𝜑 } = { 𝑦 ∣ ∃ 𝑥𝐴 𝜑 }

Proof

Step Hyp Ref Expression
1 nfcv 𝑦 𝐴
2 nfab1 𝑦 { 𝑦𝜑 }
3 1 2 nfiun 𝑦 𝑥𝐴 { 𝑦𝜑 }
4 nfab1 𝑦 { 𝑦 ∣ ∃ 𝑥𝐴 𝜑 }
5 3 4 cleqf ( 𝑥𝐴 { 𝑦𝜑 } = { 𝑦 ∣ ∃ 𝑥𝐴 𝜑 } ↔ ∀ 𝑦 ( 𝑦 𝑥𝐴 { 𝑦𝜑 } ↔ 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝜑 } ) )
6 abid ( 𝑦 ∈ { 𝑦𝜑 } ↔ 𝜑 )
7 6 rexbii ( ∃ 𝑥𝐴 𝑦 ∈ { 𝑦𝜑 } ↔ ∃ 𝑥𝐴 𝜑 )
8 eliun ( 𝑦 𝑥𝐴 { 𝑦𝜑 } ↔ ∃ 𝑥𝐴 𝑦 ∈ { 𝑦𝜑 } )
9 abid ( 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝜑 } ↔ ∃ 𝑥𝐴 𝜑 )
10 7 8 9 3bitr4i ( 𝑦 𝑥𝐴 { 𝑦𝜑 } ↔ 𝑦 ∈ { 𝑦 ∣ ∃ 𝑥𝐴 𝜑 } )
11 5 10 mpgbir 𝑥𝐴 { 𝑦𝜑 } = { 𝑦 ∣ ∃ 𝑥𝐴 𝜑 }