| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunmapss.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
iunmapss.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
iunmapss.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 4 |
3
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑊 ) ) |
| 5 |
1 4
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) |
| 6 |
|
iunexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 7 |
2 5 6
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 9 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 11 |
|
mapss |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ∧ 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( 𝐵 ↑m 𝐶 ) ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶 ) ) |
| 12 |
8 10 11
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ↑m 𝐶 ) ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶 ) ) |
| 13 |
12
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝐵 ↑m 𝐶 ) ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶 ) ) ) |
| 14 |
1 13
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶 ) ) |
| 15 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑥 ↑m |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐶 |
| 18 |
15 16 17
|
nfov |
⊢ Ⅎ 𝑥 ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶 ) |
| 19 |
18
|
iunssf |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶 ) ) |
| 20 |
14 19
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( 𝐵 ↑m 𝐶 ) ⊆ ( ∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶 ) ) |