Step |
Hyp |
Ref |
Expression |
1 |
|
uniixp |
⊢ ∪ X 𝑥 ∈ 𝐴 𝐵 ⊆ ( 𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵 ) |
2 |
|
iunexg |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
3 |
|
xpexg |
⊢ ( ( 𝐴 ∈ V ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V ) → ( 𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ V ) |
4 |
2 3
|
syldan |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → ( 𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ V ) |
5 |
|
ssexg |
⊢ ( ( ∪ X 𝑥 ∈ 𝐴 𝐵 ⊆ ( 𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ V ) → ∪ X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
6 |
1 4 5
|
sylancr |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → ∪ X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
7 |
|
uniexb |
⊢ ( X 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ∪ X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
8 |
6 7
|
sylibr |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
9 |
|
ixpprc |
⊢ ( ¬ 𝐴 ∈ V → X 𝑥 ∈ 𝐴 𝐵 = ∅ ) |
10 |
|
0ex |
⊢ ∅ ∈ V |
11 |
9 10
|
eqeltrdi |
⊢ ( ¬ 𝐴 ∈ V → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
12 |
11
|
adantr |
⊢ ( ( ¬ 𝐴 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
13 |
8 12
|
pm2.61ian |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X 𝑥 ∈ 𝐴 𝐵 ∈ V ) |