| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-lan |
⊢ Lan = ( 𝑝 ∈ ( V × V ) , 𝑒 ∈ V ↦ ⦋ ( 1st ‘ 𝑝 ) / 𝑐 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑑 ⦌ ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( 〈 𝑑 , 𝑒 〉 −∘F 𝑓 ) ( ( 𝑑 FuncCat 𝑒 ) UP ( 𝑐 FuncCat 𝑒 ) ) 𝑥 ) ) ) |
| 2 |
|
ovex |
⊢ ( 𝑐 Func 𝑑 ) ∈ V |
| 3 |
|
ovex |
⊢ ( 𝑐 Func 𝑒 ) ∈ V |
| 4 |
2 3
|
mpoex |
⊢ ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( 〈 𝑑 , 𝑒 〉 −∘F 𝑓 ) ( ( 𝑑 FuncCat 𝑒 ) UP ( 𝑐 FuncCat 𝑒 ) ) 𝑥 ) ) ∈ V |
| 5 |
4
|
csbex |
⊢ ⦋ ( 2nd ‘ 𝑝 ) / 𝑑 ⦌ ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( 〈 𝑑 , 𝑒 〉 −∘F 𝑓 ) ( ( 𝑑 FuncCat 𝑒 ) UP ( 𝑐 FuncCat 𝑒 ) ) 𝑥 ) ) ∈ V |
| 6 |
5
|
csbex |
⊢ ⦋ ( 1st ‘ 𝑝 ) / 𝑐 ⦌ ⦋ ( 2nd ‘ 𝑝 ) / 𝑑 ⦌ ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( 𝑐 Func 𝑒 ) ↦ ( ( 〈 𝑑 , 𝑒 〉 −∘F 𝑓 ) ( ( 𝑑 FuncCat 𝑒 ) UP ( 𝑐 FuncCat 𝑒 ) ) 𝑥 ) ) ∈ V |
| 7 |
1 6
|
fnmpoi |
⊢ Lan Fn ( ( V × V ) × V ) |