Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑤 ) ) |
2 |
1
|
rspcv |
⊢ ( 𝑤 ∈ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑤 ) ) |
3 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑥 ) ) |
4 |
3
|
rspcv |
⊢ ( 𝑥 ∈ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 → 𝑤 ≤ 𝑥 ) ) |
5 |
2 4
|
im2anan9r |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) → ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) ) ) |
6 |
|
ssel |
⊢ ( 𝑆 ⊆ ℝ → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ ℝ ) ) |
7 |
|
ssel |
⊢ ( 𝑆 ⊆ ℝ → ( 𝑤 ∈ 𝑆 → 𝑤 ∈ ℝ ) ) |
8 |
6 7
|
anim12d |
⊢ ( 𝑆 ⊆ ℝ → ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ) ) |
9 |
8
|
impcom |
⊢ ( ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑆 ⊆ ℝ ) → ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ) ) |
10 |
|
letri3 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → ( 𝑥 = 𝑤 ↔ ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) ) ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) ∧ 𝑆 ⊆ ℝ ) → ( 𝑥 = 𝑤 ↔ ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) ) ) |
12 |
11
|
exbiri |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( 𝑆 ⊆ ℝ → ( ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) → 𝑥 = 𝑤 ) ) ) |
13 |
12
|
com23 |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( ( 𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥 ) → ( 𝑆 ⊆ ℝ → 𝑥 = 𝑤 ) ) ) |
14 |
5 13
|
syld |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) → ( 𝑆 ⊆ ℝ → 𝑥 = 𝑤 ) ) ) |
15 |
14
|
com3r |
⊢ ( 𝑆 ⊆ ℝ → ( ( 𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) → 𝑥 = 𝑤 ) ) ) |
16 |
15
|
ralrimivv |
⊢ ( 𝑆 ⊆ ℝ → ∀ 𝑥 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) → 𝑥 = 𝑤 ) ) |
17 |
16
|
anim1ci |
⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ( ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) → 𝑥 = 𝑤 ) ) ) |
18 |
|
breq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦 ) ) |
19 |
18
|
ralbidv |
⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) ) |
20 |
19
|
reu4 |
⊢ ( ∃! 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ( ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑤 ∈ 𝑆 ( ( ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀ 𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 ) → 𝑥 = 𝑤 ) ) ) |
21 |
17 20
|
sylibr |
⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) → ∃! 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ) |