Metamath Proof Explorer


Theorem lbreu

Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005)

Ref Expression
Assertion lbreu SxSySxy∃!xSySxy

Proof

Step Hyp Ref Expression
1 breq2 y=wxyxw
2 1 rspcv wSySxyxw
3 breq2 y=xwywx
4 3 rspcv xSySwywx
5 2 4 im2anan9r xSwSySxyySwyxwwx
6 ssel SxSx
7 ssel SwSw
8 6 7 anim12d SxSwSxw
9 8 impcom xSwSSxw
10 letri3 xwx=wxwwx
11 9 10 syl xSwSSx=wxwwx
12 11 exbiri xSwSSxwwxx=w
13 12 com23 xSwSxwwxSx=w
14 5 13 syld xSwSySxyySwySx=w
15 14 com3r SxSwSySxyySwyx=w
16 15 ralrimivv SxSwSySxyySwyx=w
17 16 anim1ci SxSySxyxSySxyxSwSySxyySwyx=w
18 breq1 x=wxywy
19 18 ralbidv x=wySxyySwy
20 19 reu4 ∃!xSySxyxSySxyxSwSySxyySwyx=w
21 17 20 sylibr SxSySxy∃!xSySxy