| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcmfval |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) = if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |
| 2 |
1
|
3adant3 |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) = if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |
| 3 |
|
df-nel |
⊢ ( 0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍 ) |
| 4 |
|
iffalse |
⊢ ( ¬ 0 ∈ 𝑍 → if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) |
| 5 |
3 4
|
sylbi |
⊢ ( 0 ∉ 𝑍 → if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) |
| 7 |
2 6
|
eqtrd |
⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) |